International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Jan Willemson

Publications

Year
Venue
Title
2014
EPRINT
2014
EPRINT
2008
EPRINT
Sharemind: a framework for fast privacy-preserving computations
Dan Bogdanov Sven Laur Jan Willemson
Gathering and processing sensitive data is a difficult task. In fact, there is no common recipe for building the necessary information systems. In this paper, we present a provably secure and efficient general-purpose computation system to address this problem. Our solution - SHAREMIND - is a virtual machine for privacy-preserving data processing that relies on share computing techniques. This is a standard way for securely evaluating functions in a multi-party computation environment. The novelty of our solution is in the choice of the secret sharing scheme and the design of the protocol suite. We have made many practical decisions to make large-scale share computing feasible in practice. The protocols of SHAREMIND are information-theoretically secure in the honest-but-curious model with three computing participants. Although the honest-but-curious model does not tolerate malicious participants, it still provides significantly increased privacy preservation when compared to standard centralised databases.
2005
EPRINT
Universally Composable Time-Stamping Schemes with Audit
We present a universally composable time-stamping scheme based on universal one-way hash functions. The model we use contains an ideal auditing functionality (implementable in the Common Reference String model), the task of which is to check that the rounds' digests are correctly computed. Our scheme uses hash-trees and is just a slight modification of the known schemes of Haber-Stornetta and Benaloh-de Mare, but both the modifications and the audit functionality are crucial for provable security. The scheme turns out to be nearly optimal -- we prove that in every universally composable auditable time-stamping scheme, almost all time stamp requests must be communicated to the auditor.
2001
PKC
1998
CRYPTO