International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Alistair Stewart

Publications and invited talks

Year
Venue
Title
2025
CRYPTO
A Plausible Attack on the Adaptive Security of Threshold Schnorr Signatures
Elizabeth Crites Alistair Stewart
The standard notion of security for threshold signature schemes is static security, where the set of corrupt parties is assumed to be fixed before protocol execution. In this model, the adversary may corrupt up to t−1 out of a threshold of t parties. A stronger notion of security for threshold signatures considers an adaptive adversary, who may corrupt parties dynamically based on its view of the protocol execution, learning the corrupted parties’ secret keys as well as their states. Adaptive security of threshold signatures has become an active area of research recently due to ongoing standardization efforts. Of particular interest is full adaptive security, the analogue of static security, where the adversary may adaptively corrupt a full t−1 parties. We present a plausible attack on the full adaptive security of threshold Schnorr signature schemes with public key shares of the form pk_i = g^{sk_i}, where all secret keys sk_i lie on a polynomial. We show that a wide range of threshold Schnorr signature schemes, including all variants of FROST, Sparkle, and Lindell’22, cannot be proven fully adaptively secure without modifications or assuming the hardness of a search problem that we define in this work. We then prove a generalization that extends below t−1 adaptive corruptions.
2024
EUROCRYPT
Unbiasable Verifiable Random Functions
Emanuele Giunta Alistair Stewart
Verifiable Random Functions (VRFs) play a pivotal role in Proof of Stake (PoS) blockchain due to their applications in secret leader election protocols. However, the original definition by Goldreich, Goldwasser and Micali is by itself insufficient for such applications. The primary concern is that adversaries may craft VRF key pairs with skewed output distribution, allowing them to unfairly increase their winning chances. To address this issue David, Gazi, Kiayias and Russel (2017/573) proposed a stronger definition in the universal composability framework, while Esgin et al. (FC '21) put forward a weaker game-based one. Their proposed notions come with some limitations though. The former appears to be too strong, being seemingly impossible to instantiate without a programmable random oracle. The latter instead is not sufficient to prove security for VRF-based secret leader election schemes. In this work we close the above gap by proposing a new security property for VRF we call unbiasability. On the one hand, our notion suffices to imply fairness in VRF-based leader elections protocols. On the other hand, we provide an efficient compiler in the plain model (with no CRS) transforming any VRF into an unbiasable one under standard assumptions. Moreover, we show folklore VRF constructions in the ROM to achieve our notion without the need to program the random oracle. As a minor contribution, we also provide a generic and efficient construction of certified 1 to 1 VRFs from any VRF.