International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ernest F. Brickell

Publications

Year
Venue
Title
2012
CRYPTO
2011
CHES
2010
EPRINT
A Pairing-Based DAA Scheme Further Reducing TPM Resources
Ernie Brickell Jiangtao Li
Direct Anonymous Attestation (DAA) is an anonymous signature scheme designed for anonymous attestation of a Trusted Platform Module (TPM) while preserving the privacy of the device owner. Since TPM has limited bandwidth and computational capability, one interesting feature of DAA is to split the signer role between two entities: a TPM and a host platform where the TPM is attached. Recently, Chen proposed a new DAA scheme that is more efficient than previous DAA schemes. In this paper, we construct a new DAA scheme requiring even fewer TPM resources. Our DAA scheme is about 5 times more efficient than Chen's scheme for the TPM implementation using the Barreto-Naehrig curves. In addition, our scheme requires much smaller size of software code that needs to be implemented in the TPM. This makes our DAA scheme ideal for the TPM implementation. Our DAA scheme is efficient and provably secure in the random oracle model under the strong Diffie-Hellman assumption and the decisional Diffie-Hellman assumption.
2009
EPRINT
Enhanced Privacy ID from Bilinear Pairing
Ernie Brickell Jiangtao Li
Enhanced Privacy ID (EPID) is a cryptographic scheme that enables the remote authentication of a hardware device while preserving the privacy of the device. EPID can be seen as a direct anonymous attestation scheme with enhanced revocation capabilities. In EPID, a device can be revoked if the private key embedded in the hardware device has been extracted and published widely so that the revocation manager finds the corrupted private key. In addition, the revocation manager can revoke a device based on the signatures the device has signed, if the private key of the device is not known. In this paper, we introduce a new security notion of EPID including the formal definitions of anonymity and unforgeability with revocation. We also give a construction of an EPID scheme from bilinear pairing. Our EPID scheme is efficient and provably secure in the random oracle model under the strong Diffie-Hellman assumption and the decisional Diffie-Hellman assumption.
2008
CHES
A Vision for Platform Security
Ernie Brickell
2008
EPRINT
Simplified Security Notions of Direct Anonymous Attestation and a Concrete Scheme from Pairings
Ernie Brickell Liqun Chen Jiangtao Li
Direct Anonymous Attestation (DAA) is a cryptographic mechanism that enables remote authentication of a user while preserving privacy under the user's control. The DAA scheme developed by Brickell, Camenisch, and Chen has been adopted by the Trust Computing Group (TCG) for remote anonymous attestation of Trusted Platform Module (TPM), a small hardware device with limited storage space and communication capability. In this paper, we provide two contributions to DAA. We first introduce simplified security notions of DAA including the formal definitions of user controlled anonymity and traceability. We then propose a new DAA scheme from elliptic curve cryptography and bilinear maps. The lengths of private keys and signatures in our scheme are much shorter than the lengths in the original DAA scheme, with a similar level of security and computational complexity. Our scheme builds upon the Camenisch-Lysyanskaya signature scheme and is efficient and provably secure in the random oracle model under the LRSW (stands for Lysyanskaya, Rivest, Sahai and Wolf) assumption and the decisional Bilinear Diffie-Hellman assumption.
2007
EPRINT
Enhanced Privacy ID: A Direct Anonymous Attestation Scheme with Enhanced Revocation Capabilities
Ernie Brickell Jiangtao Li
Direct Anonymous Attestation (DAA) is a scheme that enables the remote authentication of a Trusted Platform Module (TPM) while preserving the user's privacy. A TPM can prove to a remote party that it is a valid TPM without revealing its identity and without linkability. In the DAA scheme, a TPM can be revoked only if the DAA private key in the hardware has been extracted and published widely so that verifiers obtain the corrupted private key. If the unlinkability requirement is relaxed, a TPM suspected of being compromised can be revoked even if the private key is not known. However, with the full unlinkability requirement intact, if a TPM has been compromised but its private key has not been distributed to verifiers, the TPM cannot be revoked. Furthermore, a TPM cannot be revoked from the issuer, if the TPM is found to be compromised after the DAA issuing has occurred. In this paper, we present a new DAA scheme called Enhanced Privacy ID (EPID) scheme that addresses the above limitations. While still providing unlinkability, our scheme provides a method to revoke a TPM even if the TPM private key is unknown. This expanded revocation property makes the scheme useful for other applications such as for driver's license. Our EPID scheme is efficient and provably secure in the same security model as DAA, i.e. in the random oracle model under the strong RSA assumption and the decisional Diffie-Hellman assumption.
2006
EPRINT
Software mitigations to hedge AES against cache-based software side channel vulnerabilities
Hardware side channel vulnerabilities have been studied for many years in embedded silicon-security arena including SmartCards, SetTop-boxes, etc. However, because various recent security activities have goals of improving the software isolation properties of PC platforms, software side channels have become a subject of interest. Recent publications discussed cache-based software side channel vulnerabilities of AES and RSA. Thus, following the classical approach --- a new side channel vulnerability opens a new mitigation research path --- this paper starts to investigate efficient mitigations to protect AES-software against side channel vulnerabilities. First, we will present several mitigation strategies to harden existing AES software against cache-based software side channel attacks and analyze their theoretical protection. Then, we will present a %thorough performance and security evaluation of our mitigation strategies. For ease of evaluation we measured the performance of our code against the performance of the openSSL AES implementation. In addition, we also analyzed our code under various existing attacks. Depending on the level of the required side channel protection, the measured performance loss of our mitigations strategies versus openSSL (respectively best assembler) varies between factors of 1.35 (2.66) and 2.85 (5.83).
2004
EPRINT
Direct Anonymous Attestation
Ernie Brickell Jan Camenisch Liqun Chen
This paper describes the direct anonymous attestation scheme (DAA). This scheme was adopted by the Trusted Computing Group as the method for remote authentication of a hardware module, called trusted platform module (TPM), while preserving the privacy of the user of the platform that contains the module. Direct anonymous attestation can be seen as a group signature without the feature that a signature can be opened, i.e., the anonymity is not revocable. Moreover, DAA allows for pseudonyms, i.e., for each signature a user (in agreement with the recipient of the signature) can decide whether or not the signature should be linkable to another signature. DAA furthermore allows for detection of ``known'' keys: if the DAA secret keys are extracted from a TPM and published, a verifier can detect that a signature was produced using these secret keys. The scheme is provably secure in the random oracle model under the strong RSA and the decisional Diffie-Hellman assumption.
2000
PKC
1996
CRYPTO
1992
EUROCRYPT
1992
JOFC
1992
JOFC
1991
JOFC
1990
CRYPTO
1990
EUROCRYPT
1989
CRYPTO
1989
CRYPTO
1989
EUROCRYPT
1989
EUROCRYPT
1988
CRYPTO
1988
EUROCRYPT
1988
EUROCRYPT
1987
CRYPTO
1987
CRYPTO
1987
EUROCRYPT
1986
CRYPTO
1986
EUROCRYPT
1985
CRYPTO
1984
CRYPTO
Breaking Iterated Knapsacks
Ernest F. Brickell
1983
CRYPTO
Solving Low Density Knapsacks
Ernest F. Brickell
1983
CRYPTO
1982
CRYPTO
1982
CRYPTO
1982
CRYPTO

Program Committees

CHES 2009
CHES 1999
Crypto 1995
Eurocrypt 1994
Crypto 1993
Crypto 1992 (Program chair)
Crypto 1987
Crypto 1986