International Association for Cryptologic Research

International Association
for Cryptologic Research


David Balbás


Chainable Functional Commitments for Unbounded-Depth Circuits
A functional commitment (FC) scheme allows one to commit to a vector $\vec{x}$ and later produce a short opening proof of $(f, f(\vec{x}))$ for any admissible function $f$. Since their inception, FC schemes supporting ever more expressive classes of functions have been proposed. In this work, we introduce a novel primitive that we call chainable functional commitment (CFC), which extends the functionality of FCs by allowing one to 1) open to functions of multiple inputs $f(\vec x_1, \ldots, \vec x_m)$ that are committed independently, 2) while preserving the output also in committed form. We show that CFCs for quadratic polynomial maps generically imply FCs for circuits. Then, we efficiently realize CFCs for quadratic polynomials over pairing groups and lattices, resulting in the first FC schemes for circuits of unbounded depth based on either pairing-based or lattice-based falsifiable assumptions. Our FCs require fixing a-priori only the maximal width of the circuit to be evaluated, and have opening proofs whose size only depends on the depth of the circuit. Additionally, our FCs feature other nice properties such as being additively homomorphic and supporting sublinear-time verification after offline preprocessing. Using a recent transformation that constructs homomorphic signatures (HS) from FCs, we obtain the first pairing- and lattice-based realisations of HS for bounded-width, but unbounded-depth, circuits. Prior to this work, the only HS for general circuits is lattice-based and requires bounding the circuit depth at setup time.
WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs
Developing end-to-end encrypted instant messaging solutions for group conversations is an ongoing challenge that has garnered significant attention from practitioners and the cryptographic community alike. Notably, industry-leading messaging apps such as WhatsApp and Signal Messenger have adopted the Sender Keys protocol, where each group member shares their own symmetric encryption key with others. Despite its widespread adoption, Sender Keys has never been formally modelled in the cryptographic literature, raising the following natural question: What can be proven about the security of the Sender Keys protocol, and how can we practically mitigate its shortcomings? In addressing this question, we first introduce a novel security model to suit protocols like Sender Keys, deviating from conventional group key agreement-based abstractions. Our framework allows for a natural integration of two-party messaging within group messaging sessions that may be of independent interest. Leveraging this framework, we conduct the first formal analysis of the Sender Keys protocol, and prove it satisfies a weak notion of security. Towards improving security, we propose a series of efficient modifications to Sender Keys without imposing significant performance overhead. We combine these refinements into a new protocol that we call Sender Keys+, which may be of interest both in theory and practice.