International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Jiangxia Ge

ORCID: 0000-0002-1671-7933

Publications

Year
Venue
Title
2024
ASIACRYPT
Measure-Rewind-Extract: Tighter Proofs of One-Way to Hiding and CCA Security in the Quantum Random Oracle Model
Jiangxia Ge Heming Liao Rui Xue
The One-Way to Hiding (O2H) theorem, first given by Unruh (J ACM 2015) and then restated by Ambainis et al. (CRYPTO 2019), is a crucial technique for solving the reprogramming problem in the quantum random oracle model (QROM). It provides an upper bound d\cdot\sqrt{\epsilon} for the distinguisher's advantage, where d is the query depth and \epsilon denotes the advantage of a one-wayness attacker. Later, in order to obtain a tighter upper bound, Kuchta et al. (EUROCRYPT 2020) proposed the Measure-Rewind-Measure (MRM) technique and then proved the Measure-Rewind-Measure O2H (MRM-O2H) theorem, which provides the upper bound d\cdot\epsilon. They also proposed an open question: Can we combine their MRM technique with Ambainis et al.'s semi-classical oracle technique (CRYPTO 2019) or Zhandry's compressed oracle technique (CRYPTO 2019) to prove a new O2H theorem with an upper bound even tighter than d\cdot\epsilon? In this paper, we give an affirmative answer for the above question. We propose a new technique named Measure-Rewind-Extract (MRE) by combining the MRM technique with the semi-classical oracle technique. By using MRE technique, we prove the Measure-Rewind-Extract O2H (MRE-O2H) theorem, which provides the upper bound \sqrt{d}\cdot\epsilon. As an important application of our MRE-O2H theorem, for the FO^{\slashed{\bot}}, FO_m^\slashed{\bot}, FO^{\bot} and FO_m^\bot proposed by Hofheinz et al. (TCC 2017), i.e., the key encapsulation mechanism (KEM) variants of the Fujisaki-Okamoto transformation, we prove the following results in the QROM: Their IND-CCA security can be reduced to the IND-CPA security of the underlying public key encryption (PKE) scheme without the square-root advantage loss. In particular, compared with the IND-CCA proof of FO^{\slashed{\bot}} given by Kuchta et al. (EUROCRYPT 2020), ours removes the injectivity assumption and has a tighter security bound. Under the assumption that the underlying PKE scheme is unique randomness recoverable, we for the first time prove that their IND-CCA security can be reduced to the OW-CPA security of the underlying PKE scheme without the square-root advantage loss.
2023
PKC
QCCA-Secure Generic Transformations in the Quantum Random Oracle Model
Tianshu Shan Jiangxia Ge Rui Xue
The post-quantum security of cryptographic schemes assumes that the quantum adversary only receives the classical result of computations with the secret key. Further, it is unknown whether the post-quantum secure schemes still remain secure if the adversary can obtain a superposition state of the results. In this paper, we formalize one class of public-key encryption schemes named oracle-masked schemes. Then we define the plaintext extraction procedure for those schemes and this procedure simulates the quantum-accessible decryption oracle with a certain loss. The construction of the plaintext extraction procedure does not need to take the secret key as input. Based on this property, we prove the IND-qCCA security of the Fujisaki-Okamoto (FO) transformation in the quantum random oracle model (QROM) and our security proof is tighter than the proof given by Zhandry (Crypto 2019). We also give the first IND-qCCA security proof of the REACT transformation in the QROM. Furthermore, our formalization can be applied to prove the IND-qCCA security of key encapsulation mechanisms with explicit rejection. As an example, we present the IND-qCCA security proof of TCH transformation, proposed by Huguenin-Dumittan and Vaudenay (Eurocrypt 2022), in the QROM.
2023
CRYPTO
Tighter QCCA-Secure Key Encapsulation Mechanism with Explicit Rejection in the Quantum Random Oracle Model
Jiangxia Ge Tianshu Shan Rui Xue
Hofheinz et al. (TCC 2017) proposed several key encapsulation mechanism (KEM) variants of Fujisaki-Okamoto (\textsf{FO}) transformation, including $\textsf{FO}^{\slashed{\bot}},\textsf{FO}_m^{\slashed{\bot}}, \textsf{QFO}_m^{\slashed{\bot}},\textsf{FO}^{\bot},\textsf{FO}_m^\bot$ and $\textsf{QFO}_m^\bot$, and they are widely used in the post-quantum cryptography standardization launched by NIST. These transformations are divided into two types, the implicit and explicit rejection type, including $\{\textsf{FO}^{\slashed{\bot}}$, $\textsf{FO}_m^{\slashed{\bot}}$, $\textsf{QFO}_m^{\slashed{\bot}}\}$ and $\{\textsf{FO}^{\bot}$, $\textsf{FO}_m^\bot$, $\textsf{QFO}_m^\bot\}$, respectively. The decapsulation algorithm of the implicit (resp. explicit) rejection type returns a pseudorandom value (resp. an abort symbol $\bot$) for an invalid ciphertext. For the implicit rejection type, the \textsf{IND-CCA} security reduction of $\textsf{FO}^\slashed{\bot}$ in the quantum random oracle model (QROM) can avoid the quadratic security loss, as shown by Kuchta et al. (EUROCRYPT 2020). However, for the explicit rejection type, the best known \textsf{IND-CCA} security reduction in the QROM presented by H{\"o}velmanns et al. (ASIACRYPT 2022) for $\textsf{FO}_m^\bot$ still suffers from a quadratic security loss. Moreover, it is not clear until now whether the implicit rejection type is more secure than the explicit rejection type. In this paper, a QROM security reduction of $\textsf{FO}_m^\bot$ without incurring a quadratic security loss is provided. Furthermore, our reduction achieves \textsf{IND-qCCA} security, which is stronger than the \textsf{IND-CCA} security. To achieve our result, two steps are taken: The first step is to prove that the \textsf{IND-qCCA} security of $\textsf{FO}_m^\bot$ can be tightly reduced to the \textsf{IND-CPA} security of $\textsf{FO}_m^\bot$ by using the online extraction technique proposed by Don et al. (EUROCRYPT 2022). The second step is to prove that the \textsf{IND-CPA} security of $\textsf{FO}_m^\bot$ can be reduced to the \textsf{IND-CPA} security of the underlying public key encryption (PKE) scheme without incurring quadratic security loss by using the Measure-Rewind-Measure One-Way to Hiding Lemma (EUROCRYPT 2020). In addition, we prove that (at least from a theoretic point of view), security is independent of whether the rejection type is explicit ($\textsf{FO}_m^\bot$) or implicit ($\textsf{FO}_m^{\slashed{\bot}}$) if the underlying PKE scheme is weakly $\gamma$-spread.

Coauthors

Jiangxia Ge (3)
Heming Liao (1)
Tianshu Shan (2)
Rui Xue (3)