International Association for Cryptologic Research

International Association
for Cryptologic Research


Julien Duman

ORCID: 0000-0002-5195-1290


Generic Models for Group Actions
We define the Generic Group Action Model (GGAM), an adaptation of the Generic Group Model to the setting of group actions (such as CSIDH). Compared to a previously proposed definition by Montgomery and Zhandry (ASIACRYPT~'22), our GGAM more accurately abstracts the security properties of group actions. We are able to prove information-theoretic lower bounds in the GGAM for the discrete logarithm assumption, as well as for non-standard assumptions recently introduced in the setting of threshold and identification schemes on group actions. Unfortunately, in a natural quantum version of the GGAM, the discrete logarithm assumption does not hold. To this end we also introduce the weaker Quantum Algebraic Group Action Model (QAGAM), where every set element (in superposition) output by an adversary is required to have an explicit representation relative to known elements. In contrast to the Quantum Generic Group Action Model, in the QAGAM we are able to analyze the hardness of group action assumptions: We prove (among other things) the equivalence between the discrete logarithm assumption and non-standard assumptions recently introduced in the setting of QROM security for Password-Authenticated Key Exchange, Non-Interactive Key Exchange, and Public-Key Encryption.
A Thorough Treatment of Highly-Efficient NTRU Instantiations
Cryptography based on the hardness of lattice problems over polynomial rings currently provides the most practical solution for pub- lic key encryption in the quantum era. Indeed, three of the four schemes chosen by NIST in the recently-concluded post-quantum standardization effort for encryption and signature schemes are based on the hardness of these problems. While the first encryption scheme utilizing properties of polynomial rings was NTRU (ANTS ’98), the scheme that NIST chose for public key encryption (CRYSTALS-Kyber) is based on the hardness of the somewhat-related Module-LWE problem. One of the reasons for Kyber’s selection was the fact that it is noticeably faster than NTRU and a little more compact. And indeed, the practical NTRU encryption schemes in the literature generally lag their Ring/Module-LWE counter- parts in either compactness or speed, or both. In this paper, we put the efficiency of NTRU-based schemes on equal (even slightly better, actually) footing with their Ring/Module-LWE counterparts. We provide several instantiations and transformations, with security given in the ROM and the QROM, that are on par, compactness- wise, with their counterparts based on Ring/Module-LWE. Performance- wise, the NTRU schemes instantiated in this paper over NTT-friendly rings of the form Z_q[X]/(X^d − X^{d/2} + 1) are the fastest of all public key encryption schemes, whether quantum-safe or not. When compared to the NIST finalist NTRU-HRSS-701, our scheme is 15% more compact and has a 15X improvement in the round-trip time of ephemeral key exchange, with key generation being 35X faster, encapsulation being 6X faster, and decapsulation enjoying a 9X speedup.
Group Action Key Encapsulation and Non-Interactive Key Exchange in the QROM 📺
In the context of quantum-resistant cryptography, cryptographic group actions offer an abstraction of isogeny-based cryptography in the Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) setting. In this work, we revisit the security of two previously proposed natural protocols: the Group Action Hashed ElGamal key encapsulation mechanism (GA-HEG KEM) and the Group Action Hashed Diffie-Hellman non-interactive key-exchange (GA-HDH NIKE) protocol. The latter protocol has already been considered to be used in practical protocols such as Post-Quantum WireGuard (S&P '21) and OPTLS (CCS '20). We prove that active security of the two protocols in the Quantum Random Oracle Model (QROM) inherently relies on very strong variants of the Group Action Strong CDH problem, where the adversary is given arbitrary quantum access to a DDH oracle. That is, quantum accessible Strong CDH assumptions are not only sufficient but also necessary to prove active security of the GA-HEG KEM and the GA-HDH NIKE protocols. Furthermore, we propose variants of the protocols with QROM security from the classical Strong CDH assumption, i.e., CDH with classical access to the DDH oracle. Our first variant uses key confirmation and can therefore only be applied in the KEM setting. Our second but considerably less efficient variant is based on the twinning technique by Cash et al. (EUROCRYPT '08) and in particular yields the first actively secure isogeny-based NIKE with QROM security from the standard CDH assumption.