International Association for Cryptologic Research

International Association
for Cryptologic Research


Juan Grados


Boosting Differential-Linear Cryptanalysis of ChaCha7 with MILP
In this paper, we present an improved differential-linear cryptanalysis of the ChaCha stream cipher. Our main contributions are new differential-linear distinguishers that we were able to build thanks to the following improvements: a) we considered a larger search space, including 2-bit differences (besides 1-bit differences) for the difference at the beginning of the differential part of the differential-linear trail; b) a better choice of mask between the differential and linear parts; c) a carefully crafted MILP tool that finds linear trails with higher correlation for the linear part. We eventually obtain a new distinguisher for ChaCha reduced to 7 rounds that requires 2166.89 computations, improving the previous record (ASIACRYPT 2022) by a factor of 247. Also, we obtain a distinguisher for ChaCha reduced to 7.5 rounds that requires 2251.4 computations, being the first time of a distinguisher against ChaCha reduced to 7.5 rounds. Using our MILP tool, we also found a 5-round differential-linear distinguisher. When combined with the probabilistic neutral bits (PNB) framework, we obtain a key-recovery attack on ChaCha reduced to 7 rounds with a computational complexity of 2206.8, improving by a factor 214.2 upon the recent result published at EUROCRYPT 2022.
Latin Dances Reloaded: Improved Cryptanalysis against Salsa and ChaCha, and the proposal of Forró 📺
In this paper, we present 4 major contributions to ARX ciphers and in particular to the Salsa/ChaCha family of stream ciphers: a) We propose an improved differential-linear distinguisher against ChaCha. To do so, we propose a new way to approach the derivation of linear approximations by viewing the algorithm in terms of simpler subrounds. Using this idea we show that it is possible to derive almost all linear approximations from previous works from just 3 simple rules. Furthermore, we show that with one extra rule it is possible to improve the linear approximations proposed by Coutinho and Souza at Eurocrypt 2021. b) We propose a technique called Bidirectional Linear Expansions (BLE) to improve attacks against Salsa. While previous works only considered linear expansions moving forward into the rounds, BLE explores the expansion of a single bit in both forward and backward directions. Applying BLE, we propose the first differential-linear distinguishers ranging 7 and 8 rounds of Salsa and we improve PNB key-recovery attacks against 8 rounds of Salsa. c) Using all the knowledge acquired studying the cryptanalysis of these ciphers, we propose some modifications in order to provide better diffusion per round and higher resistance to cryptanalysis, leading to a new stream cipher named Forró. We show that Forró has higher security margin, this allows us to reduce the total number of rounds while maintaining the security level, thus creating a faster cipher in many platforms, specially in constrained devices. d) Finally, we developed CryptDances, a new tool for the cryptanalysis of Salsa, ChaCha, and Forró designed to be used in high performance environments with several GPUs. With CryptDances it is possible to compute differential correlations, to derive new linear approximations for ChaCha automatically, to automate the computation of the complexity of PNB attacks, among other features. We make CryptDances available for the community at