International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Vukašin Karadžić

Publications

Year
Venue
Title
2023
ASIACRYPT
Populating the Zoo of Rugged Pseudorandom Permutations
Jean Paul Degabriele Vukašin Karadžić
A Rugged Pseudorandom Permutation (RPRP) is a variable-input-length tweakable cipher satisfying a security notion that is intermediate between tweakable PRP and tweakable SPRP. It was introduced at CRYPTO 2022 by Degabriele and Karadžić, who additionally showed how to generically convert such a primitive into nonce-based and nonce-hiding AEAD schemes satisfying either misuse-resistance or release-of-unverified-plaintext security as well as Nonce-Set AEAD which has applications in protocols like QUIC and DTLS. Their work shows that RPRPs are powerful and versatile cryptographic primitives. However, the RPRP security notion itself can seem rather contrived, and the motivation behind it is not immediately clear. Moreover, they only provided a single RPRP construction, called UIV, which puts into question the generality of their modular approach and whether other instantiations are even possible. In this work, we address this question positively by presenting new RPRP constructions, thereby validating their modular approach and providing further justification in support of the RPRP security definition. Furthermore, we present a more refined view of their results by showing that strictly weaker RPRP variants, which we introduce, suffice for many of their transformations. From a theoretical perspective, our results show that the well-known three-round Feistel structure achieves stronger security as a permutation than a mere pseudorandom permutation—as was established in the seminal result by Luby and Rackoff. We conclude on a more practical note by showing how to extend the left domain of one RPRP construction for applications that require larger values in order to meet the desired level of security.
2022
CRYPTO
Overloading the Nonce: Rugged PRPs, Nonce-Set AEAD, and Order-Resilient Channels 📺
Jean Paul Degabriele Vukašin Karadžić
We introduce a new security notion that lies right in between pseudorandom permutations (PRPs) and strong pseudorandom permutations (SPRPs). We call this new security notion and any (tweakable) cipher that satisfies it a rugged pseudorandom permutation (RPRP). Rugged pseudorandom permutations lend themselves to some interesting applications, have practical benefits, and lead to novel cryptographic constructions. Analogous to the encode-then-encipher paradigm first proposed by Bellare and Rogaway and later extended by Shrimpton and Terashima, we can transform a variable-length tweakable RPRP into an AEAD scheme. However, we can construct RPRPs more efficiently as they are weaker primitives than SPRPs (the notion traditionally required by the encode-then-encipher paradigm). We can construct RPRPs using two-pass schemes, whereas SPRPs typically require three passes over the input data. We also identify new transformations that yield RUP-secure AEAD schemes with more compact ciphertexts than previously known. Further extending this approach, we arrive at a new generalized notion of authenticated encryption and a matching construction, which we refer to as nonce-set AEAD. Nonce-set AEAD is particularly well-suited in the context of secure channels, like QUIC and DTLS, that operate over unreliable transports and employ a window mechanism at the receiver's end of the channel. We conclude by presenting a generic construction for transforming a nonce-set AEAD scheme into an order-resilient secure channel. Our channel construction sheds new light on order-resilient channels and additionally leads to more compact ciphertexts when instantiated from RPRPs.

Coauthors

Jean Paul Degabriele (2)