## CryptoDB

### Eliran Kachlon

#### Publications

**Year**

**Venue**

**Title**

2024

CRYPTO

Stochastic Secret Sharing with 1-Bit Shares and Applications to MPC
Abstract

The problem of minimizing the share size of threshold secret-sharing schemes is a basic research question that has been extensively studied. Ideally, one strives for schemes in which the share size equals the secret size. While this is achievable for large secrets (Shamir, CACM '79), no similar solutions are known for the case of binary, single-bit secrets. Current approaches often rely on so-called ramp secret sharing that achieves a constant share size at the expense of a slight gap between the privacy and the correctness thresholds. In the case of single-bit shares, this leads to a large gap which is typically unacceptable. The possibility of a meaningful notion of secret sharing scheme with 1-bit shares and almost optimal threshold has been left wide open. Of special interest is the case of threshold 0.5, which is motivated by information-theoretic honest-majority secure multiparty computation (MPC).
In this work, we present a new stochastic model for secret-sharing where each party is corrupted by the adversary with probability $p$, independently of the other parties, and correctness and privacy are required to hold with high probability over the choice of the corrupt parties. We present new secret sharing schemes with single-bit shares that tolerate any constant corruption probability $p<0.5$. Our construction is based on a novel connection between such stochastic secret-sharing schemes and error-correcting codes that achieve capacity over the binary erasure channel.
Our schemes are linear and multiplicative. We demonstrate the usefulness of the model by using our new schemes to construct MPC protocols with security against an adversary that passively corrupts an arbitrary subset of $0.499n$ of the parties, where the online communication per party consists of a single bit per AND gate and zero communication per XOR gate. Unlike competing approaches for communication-efficient MPC, our solution is applicable even in a real-time model in which the parties should compute a Boolean circuit whose gates arrive in real-time, one at a time, and are not known in advance.

2022

CRYPTO

Verifiable Relation Sharing and Multi-Verifier Zero-Knowledge in Two Rounds: Trading NIZKs with Honest Majority
📺
Abstract

We introduce the problem of Verifiable Relation Sharing (VRS) where a client (prover) wishes to share a vector of secret data items among $k$ servers (the verifiers) while proving in zero-knowledge that the shared data satisfies some properties. This combined task of sharing and proving generalizes notions like verifiable secret sharing and zero-knowledge proofs over secret-shared data. We study VRS from a theoretical perspective and focus on its round complexity.
As our main contribution, we show that every efficiently-computable relation can be realized by a VRS with an optimal round complexity of two rounds where the first round is input-independent (offline round). The protocol achieves full UC-security against an active adversary that is allowed to corrupt any $t$-subset of the parties that may include the client together with some of the verifiers. For a small (logarithmic) number of parties, we achieve an optimal resiliency threshold of $t<0.5(k+1)$, and for a large (polynomial) number of parties, we achieve an almost-optimal resiliency threshold of $t<0.5(k+1)(1-\epsilon)$ for an arbitrarily small constant $\epsilon>0$. Both protocols can be based on sub-exponentially hard injective one-way functions. If the parties have an access to a collision resistance hash function, we can derive statistical everlasting security, i.e., the protocols are secure against adversaries that are computationally bounded during the protocol execution and become computationally unbounded after the protocol execution.
Previous 2-round solutions achieve smaller resiliency thresholds and weaker security notions regardless of the underlying assumptions. As a special case, our protocols give rise to 2-round offline/online constructions of multi-verifier zero-knowledge proofs (MVZK). Such constructions were previously obtained under the same type of assumptions that are needed for NIZK, i.e., public-key assumptions or random-oracle type assumptions (Abe et al., Asiacrypt 2002; Groth and Ostrovsky, Crypto 2007; Boneh et al., Crypto 2019; Yang, and Wang, Eprint 2022). Our work shows, for the first time, that in the presence of an honest majority these assumptions can be replaced with more conservative ``Minicrypt''-type assumptions like injective one-way functions and collision-resistance hash functions. Indeed, our MVZK protocols provide a round-efficient substitute for NIZK in settings where honest-majority is present. Additional applications are also presented.

2022

TCC

Round-optimal Honest-majority MPC in Minicrypt and with Everlasting Security
Abstract

We study the round complexity of secure multiparty computation (MPC) in the challenging model where full security, including guaranteed output delivery, should be achieved at the presence of an active rushing adversary who corrupts up to half of parties. It is known that 2 rounds are insufficient in this model (Gennaro et al., Crypto 2002), and that 3 round protocols can achieve computational security under public-key assumptions (Gordon et al., Crypto 2015; Ananth et al., Crypto 2018; and Badrinarayanan et al., Asiacrypt 2020). However, despite much effort, it is unknown whether public-key assumptions are inherently needed for such protocols, and whether one can achieve similar results with security against computationally-unbounded adversaries.
In this paper, we use Minicrypt-type assumptions to realize 3-round MPC with full and active security. Our protocols come in two flavors: for a small (logarithmic) number of parties $n$, we achieve an optimal resiliency threshold of $t\leq \lfloor (n-1)/2\rfloor$, and for a large (polynomial) number of parties we achieve an almost-optimal resiliency threshold of $t\leq 0.5n(1-\epsilon)$ for an arbitrarily small constant $\epsilon > 0$. Both protocols can be based on sub-exponentially hard injective one-way functions in the plain model.
If the parties have an access to a collision resistance hash function, we can derive \emph{statistical everlasting security} for every NC1 functionality, i.e., the protocol is secure against adversaries that are computationally bounded during the execution of the protocol and become computationally unlimited after the protocol execution.
As a secondary contribution, we show that in the strong honest-majority setting ($t<n/3$), every NC1 functionality can be computed in 3 rounds with everlasting security and complexity polynomial in $n$ based on one-way functions. Previously, such a result was only known based on collision-resistance hash function.

2020

TCC

The Resiliency of MPC with Low Interaction: The Benefit of Making Errors
📺
Abstract

We study information-theoretic secure multiparty protocols that achieve full security, including guaranteed output delivery, at the presence of an active adversary that corrupts a constant fraction of the parties. It is known that 2 rounds are insufficient for such protocols even when the adversary corrupts only two parties (Gennaro, Ishai, Kushilevitz, and Rabin; Crypto 2002), and that perfect protocols can be implemented in three rounds as long as the adversary corrupts less than a quarter of the parties (Applebaum , Brakerski, and Tsabary; Eurocrypt, 2019). Furthermore, it was recently shown that the quarter threshold is tight for any 3-round \emph{perfectly-secure} protocol (Applebaum, Kachlon, and Patra; FOCS 2020). Nevertheless, one may still hope to achieve a better-than-quarter threshold at the expense of allowing some negligible correctness errors and/or statistical deviations in the security.
Our main results show that this is indeed the case. Every function can be computed by 3-round protocols with \emph{statistical} security as long as the adversary corrupts less than third of the parties. Moreover, we show that any better resiliency threshold requires four rounds. Our protocol is computationally inefficient and has an exponential dependency in the circuit's depth $d$ and in the number of parties $n$. We show that this overhead can be avoided by relaxing security to computational, assuming the existence of a non-interactive commitment (NICOM). Previous 3-round computational protocols were based on stronger public-key assumptions. When instantiated with statistically-hiding NICOM, our protocol provides \emph{everlasting statistical} security, i.e., it is secure against adversaries that are computationally unlimited \emph{after} the protocol execution.
To prove these results, we introduce a new hybrid model that allows for 2-round protocols with linear resliency threshold. Here too we prove that, for perfect protocols, the best achievable resiliency is $n/4$, whereas statistical protocols can achieve a threshold of $n/3$. We also construct the first 2-round $n/3$-statistical verifiable secret sharing that supports second-level sharing and prove a matching lower-bound, extending the results of Patra, Choudhary, Rabin, and Rangan (Crypto 2009). Overall, our results refines the differences between statistical and perfect models of security, and show that there are efficiency gaps even in the regime of realizable thresholds.

#### Coauthors

- Benny Applebaum (4)
- Eliran Kachlon (4)
- Arpita Patra (3)