International Association for Cryptologic Research

International Association
for Cryptologic Research


Fabio Banfi


Anamorphic Encryption, Revisited
Anamorphic encryption refers to an enhanced version of an established PKE scheme which can be set up with an additional so-called double key, shared by sender and receiver. This protects against a dictator that can force the receiver to reveal the secret keys for the PKE scheme, but who is oblivious about the existence of the double key. We identify two limitations of the original model by Persiano, Phan, and Yung (EUROCRYPT 2022). First, in their definition a double key can only be generated once, together with a key-pair. This has the drawback that a receiver who wants to use the anamorphic mode after a dictator comes to power, needs to deploy a new key-pair, a potentially suspicious act. Second, a receiver cannot distinguish whether or not a ciphertext contains a covert message. In this work we propose a new model that overcomes these limitations. First, we allow to associate multiple double keys to a key-pair, after its deployment. This also enables deniability in case the double key only depends on the public key. Second, we propose a natural robustness notion, which guarantees that anamorphically decrypting a regularly encrypted message results in a special symbol indicating that no covert message is contained, which also eliminates certain attacks. Finally, to instantiate our new, stronger definition of anamorphic encryption, we provide generic and concrete constructions. Concretely, we show that ElGamal and Cramer-Shoup satisfy a new condition, selective randomness recoverability, which enables robust anamorphic extensions, and we also provide a robust anamorphic extension for RSA-OAEP.
SCB Mode: Semantically Secure Length-Preserving Encryption
Fabio Banfi
To achieve semantic security, symmetric encryption schemes classically require ciphertext expansion. In this paper we provide a means to achieve semantic security while preserving the length of messages at the cost of mildly sacrificing correctness. Concretely, we propose a new scheme that can be interpreted as a secure alternative to (or wrapper around) plain Electronic Codebook (ECB) mode of encryption, and for this reason we name it Secure Codebook (SCB). Our scheme is the first length-preserving encryption scheme to effectively achieve semantic security.
Composable and Finite Computational Security of Quantum Message Transmission
Recent research in quantum cryptography has led to the development of schemes that encrypt and authenticate quantum messages with computational security. The security definitions used so far in the literature are asymptotic, game-based, and not known to be composable. We show how to define finite, composable, computational security for secure quantum message transmission. The new definitions do not involve any games or oracles, they are directly operational: a scheme is secure if it transforms an insecure channel and a shared key into an ideal secure channel from Alice to Bob, i.e., one which only allows Eve to block messages and learn their size, but not change them or read them. By modifying the ideal channel to provide Eve with more or less capabilities, one gets an array of different security notions. By design these transformations are composable, resulting in composable security.Crucially, the new definitions are finite. Security does not rely on the asymptotic hardness of a computational problem. Instead, one proves a finite reduction: if an adversary can distinguish the constructed (real) channel from the ideal one (for some fixed security parameters), then she can solve a finite instance of some computational problem. Such a finite statement is needed to make security claims about concrete implementations.We then prove that (slightly modified versions of) protocols proposed in the literature satisfy these composable definitions. And finally, we study the relations between some game-based definitions and our composable ones. In particular, we look at notions of quantum authenticated encryption and $$\mathsf{QCCA2}$$, and show that they suffer from the same issues as their classical counterparts: they exclude certain protocols which are arguably secure.