International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ariel Weizman

Publications

Year
Venue
Title
2023
CRYPTO
Practical-Time Related-Key Attack on GOST with Secret S-boxes
The block cipher GOST 28147-89 was the Russian Federation encryption standard for over 20 years, and is still one of its two standard block ciphers. GOST is a 32-round Feistel construction, whose security benefits from the fact that the S-boxes used in the design are kept secret. In the last 10 years, several attacks on the full 32-round GOST were presented. However, they all assume that the S-boxes are known. When the S-boxes are secret, all published attacks either target a small number of rounds, or apply for small sets of weak keys. In this paper we present the first practical-time attack on GOST with secret S-boxes. The attack works in the related-key model and is faster than all previous attacks in this model which assume that the S-boxes are known. The complexity of the attack is less than $2^{27}$ encryptions. It was fully verified, and runs in a few seconds on a PC. The attack is based on a novel type of related-key differentials of GOST, inspired by local collisions. Our new technique may be applicable to certain GOST-based hash functions as well. To demonstrate this, we show how to find a collision on a Davies-Meyer construction based on GOST with an arbitrary initial value, in less than $2^{10}$ hash function evaluations.
2019
EUROCRYPT
DLCT: A New Tool for Differential-Linear Cryptanalysis
Differential cryptanalysis and linear cryptanalysis are the two best-known techniques for cryptanalysis of block ciphers. In 1994, Langford and Hellman introduced the differential-linear (DL) attack based on dividing the attacked cipher E into two subciphers $$E_0$$E0 and $$E_1$$E1 and combining a differential characteristic for $$E_0$$E0 with a linear approximation for $$E_1$$E1 into an attack on the entire cipher E. The DL technique was used to mount the best known attacks against numerous ciphers, including the AES finalist Serpent, ICEPOLE, COCONUT98, Chaskey, CTC2, and 8-round DES.Several papers aimed at formalizing the DL attack, and formulating assumptions under which its complexity can be estimated accurately. These culminated in a recent work of Blondeau, Leander, and Nyberg (Journal of Cryptology, 2017) which obtained an accurate expression under the sole assumption that the two subciphers $$E_0$$E0 and $$E_1$$E1 are independent.In this paper we show that in many cases, dependency between the two subcipher s significantly affects the complexity of the DL attack, and in particular, can be exploited by the adversary to make the attack more efficient. We present the Differential-Linear Connectivity Table (DLCT) which allows us to take into account the dependency between the two subciphers, and to choose the differential characteristic in $$E_0$$E0 and the linear approximation in $$E_1$$E1 in a way that takes advantage of this dependency. We then show that the DLCT can be constructed efficiently using the Fast Fourier Transform. Finally, we demonstrate the strength of the DLCT by using it to improve differential-linear attacks on ICEPOLE and on 8-round DES, and to explain published experimental results on Serpent and on the CAESAR finalist Ascon which did not comply with the standard differential-linear framework.