International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Lennert Wouters

Affiliation: imec-COSIC, KU Leuven Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee

Publications

Year
Venue
Title
2020
TCHES
Dismantling DST80-based Immobiliser Systems
Car manufacturers deploy vehicle immobiliser systems in order to prevent car theft. However, in many cases the underlying cryptographic primitives used to authenticate a transponder are proprietary in nature and thus not open to public scrutiny. In this paper we publish the proprietary Texas Instruments DST80 cipher used in immobilisers of several manufacturers. Additionally, we expose serious flaws in immobiliser systems of major car manufacturers such as Toyota, Kia, Hyundai and Tesla. Specifically, by voltage glitching the firmware protection mechanisms of the microcontroller, we extracted the firmware from several immobiliser ECUs and reverse engineered the key diversification schemes employed within. We discovered that Kia and Hyundai immobiliser keys have only three bytes of entropy and that Toyota only relies on publicly readable information such as the transponder serial number and three constants to generate cryptographic keys. Furthermore, we present several practical attacks which can lead to recovering the full 80-bit cryptographic key in a matter of seconds or permanently disabling the transponder. Finally, even without key management or configuration issues, we demonstrate how an attacker can recover the cryptographic key using a profiled side-channel attack. We target the key loading procedure and investigate the practical applicability in the context of portability. Our work once again highlights the issues automotive vendors face in implementing cryptography securely.
2019
TCHES
Fast, Furious and Insecure: Passive Keyless Entry and Start Systems in Modern Supercars 📺
The security of immobiliser and Remote Keyless Entry systems has been extensively studied over many years. Passive Keyless Entry and Start systems, which are currently deployed in luxury vehicles, have not received much attention besides relay attacks. In this work we fully reverse engineer a Passive Keyless Entry and Start system and perform a thorough analysis of its security.Our research reveals several security weaknesses. Specifically, we document the use of an inadequate proprietary cipher using 40-bit keys, the lack of mutual authentication in the challenge-response protocol, no firmware readout protection features enabled and the absence of security partitioning.In order to validate our findings, we implement a full proof of concept attack allowing us to clone a Tesla Model S key fob in a matter of seconds with low cost commercial off the shelf equipment. Our findings most likely apply to other manufacturers of luxury vehicles including McLaren, Karma and Triumph motorcycles as they all use the same system developed by Pektron.