International Association for Cryptologic Research

International Association
for Cryptologic Research


Daniel Coggia


Efficient MILP Modelings for Sboxes and Linear Layers of SPN ciphers 📺
Daniel Coggia Christina Boura
Mixed Integer Linear Programming (MILP) solvers are regularly used by designers for providing security arguments and by cryptanalysts for searching for new distinguishers. For both applications, bitwise models are more refined and permit to analyze properties of primitives more accurately than word-oriented models. Yet, they are much heavier than these last ones. In this work, we first propose many new algorithms for efficiently modeling differential propagation through Sboxes. We manage notably to represent the AES Sbox with three times less inequalities than before. Then, we present two new algorithms inspired from coding theory to model complex linear layers without dummy variables. This permits us to represent many diffusion matrices, notably the ones of Skinny-128 and AES in a much more compact way. To demonstrate the impact of our new models on the solving time we ran experiments for both Skinny-128 and AES. Finally, our new models allowed us to computationally prove that there are no impossible differentials for 5-round AES and 13-round Skinny-128 with exactly one input and one output active byte, even if the details of both the Sbox and the linear layer are taken into account.
A General Proof Framework for Recent AES Distinguishers 📺
In this paper, a new framework is developed for proving and adapting the recently proposed multiple-of-8 property and mixture-differential distinguishers. The above properties are formulated as immediate consequences of an equivalence relation on the input pairs, under which the difference at the output of the round function is invariant. This approach provides a further understanding of these newly developed distinguishers. For example, it clearly shows that the branch number of the linear layer does not influence the validity of the property, on the contrary of what was previously believed. We further provide an extension of the mixture-differential distinguishers and multiple-of-8 property to any SPN and to a larger class of subspaces. These adapted properties can then be exhibited in a systematic way for other ciphers than the AES. We illustrate this with the examples of Midori, Klein, LED and Skinny.


Christina Boura (2)
Anne Canteaut (1)