CryptoDB
Mathieu Carbone
Publications and invited talks
Year
Venue
Title
2025
TCHES
Optimal Dimensionality Reduction using Conditional Variational AutoEncoder
Abstract
The benefits of using Deep Learning techniques to enhance side-channel attacks performances have been demonstrated over recent years. Most of the work carried out since then focuses on discriminative models. However, one of their major limitations is the lack of theoretical results. Indeed, this lack of theoretical results, especially concerning the choice of neural network architecture to consider or the loss to prioritize to build an optimal model, can be problematic for both attackers and evaluators. Recently, Zaid et al. addressed this problem by proposing a generative model that bridges conventional profiled attacks and deep learning techniques, thus providing a model that is both explicable and interpretable. Nevertheless the proposed model has several limitations. Indeed, the architecture is too complex, higher-order attacks cannot be mounted and desynchronization is not handled by this model. In this paper, we address the first limitation namely the architecture complexity, as without a simpler model, the other limitations cannot be treated properly. To do so, we propose a new generative model that relies on solid theoretical results. This model is based on conditional variational autoencoder and converges towards the optimal statistical model i.e. it performs an optimal attack. By building on and extending the state-of-the-art theoretical works on dimensionality reduction, we integrate into this neural network an optimal dimensionality reduction i.e. a dimensionality reduction that is achieved without any loss of information. This results in a gain of O(D), with D the dimension of traces, compared to Zaid et al. neural network in terms of architecture complexity, while at the same time enhancing the explainability and interpretability. In addition, we propose a new attack strategy based on our neural network, which reduces the attack complexity of generative models from O(N) to O(1), with N the number of generated traces. We validate all our theoretical results experimentally using extensive simulations and various publicly available datasets covering symmetric, asymmetric pre and post-quantum cryptography implementations.
2023
TCHES
Conditional Variational AutoEncoder based on Stochastic Attacks
Abstract
Over the recent years, the cryptanalysis community leveraged the potential of research on Deep Learning to enhance attacks. In particular, several studies have recently highlighted the benefits of Deep Learning based Side-Channel Attacks (DLSCA) to target real-world cryptographic implementations. While this new research area on applied cryptography provides impressive result to recover a secret key even when countermeasures are implemented (e.g. desynchronization, masking schemes), the lack of theoretical results make the construction of appropriate and powerful models a notoriously hard problem. This can be problematic during an evaluation process where a security bound is required. In this work, we propose the first solution that bridges DL and SCA in order to get this security bound. Based on theoretical results, we develop the first Machine Learning generative model, called Conditional Variational AutoEncoder based on Stochastic Attacks (cVAE-SA), designed from the well-known Stochastic Attacks, that have been introduced by Schindler et al. in 2005. This model reduces the black-box property of DL and eases the architecture design for every real-world crypto-system as we define theoretical complexity bounds which only depend on the dimension of the (reduced) trace and the targeting variable over F2n . We validate our theoretical proposition through simulations and public datasets on a wide range of use cases, including multi-task learning, curse of dimensionality and masking scheme.
2019
TCHES
Deep Learning to Evaluate Secure RSA Implementations
📺
Abstract
This paper presents the results of several successful profiled side-channel attacks against a secure implementation of the RSA algorithm. The implementation was running on a ARM Core SC 100 completed with a certified EAL4+ arithmetic co-processor. The analyses have been conducted by three experts’ teams, each working on a specific attack path and exploiting information extracted either from the electromagnetic emanation or from the power consumption. A particular attention is paid to the description of all the steps that are usually followed during a security evaluation by a laboratory, including the acquisitions and the observations preprocessing which are practical issues usually put aside in the literature. Remarkably, the profiling portability issue is also taken into account and different device samples are involved for the profiling and testing phases. Among other aspects, this paper shows the high potential of deep learning attacks against secure implementations of RSA and raises the need for dedicated countermeasures.
Service
- CiC 2025 Editor
Coauthors
- Lilian Bossuet (1)
- Sana Boussam (1)
- Mathieu Carbone (3)
- Vincent Conin (1)
- Marie-Angela Cornélie (1)
- François Dassance (1)
- Guillaume Dufresne (1)
- Cécile Dumas (1)
- Benoît Gérard (1)
- Amaury Habrard (1)
- Emmanuel Prouff (1)
- Guénaël Renault (1)
- Alexandre Venelli (2)
- Gabriel Zaid (2)