International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Eran Lambooij

Publications

Year
Venue
Title
2019
TOSC
Zero-Correlation Attacks on Tweakable Block Ciphers with Linear Tweakey Expansion 📺
The design and analysis of dedicated tweakable block ciphers is a quite recent and very active research field that provides an ongoing stream of new insights. For instance, results of Kranz, Leander, and Wiemer from FSE 2017 show that the addition of a tweak using a linear tweak schedule does not introduce new linear characteristics. In this paper, we consider – to the best of our knowledge – for the first time the effect of the tweak on zero-correlation linear cryptanalysis for ciphers that have a linear tweak schedule. It turns out that the tweak can often be used to get zero-correlation linear hulls covering more rounds compared to just searching zero-correlation linear hulls on the data-path of a cipher. Moreover, this also implies the existence of integral distinguishers on the same number of rounds. We have applied our technique on round reduced versions of Qarma, Mantis, and Skinny. As a result, we can present – to the best of our knowledge – the best attack (with respect to number of rounds) on a round-reduced variant of Qarma.
2019
CRYPTO
How to Build Pseudorandom Functions from Public Random Permutations 📺
Yu Long Chen Eran Lambooij Bart Mennink
Pseudorandom functions are traditionally built upon block ciphers, but with the trend of permutation based cryptography, it is a natural question to investigate the design of pseudorandom functions from random permutations. We present a generic study of how to build beyond birthday bound secure pseudorandom functions from public random permutations. We first show that a pseudorandom function based on a single permutation call cannot be secure beyond the $$2^{n/2}$$ birthday bound, where n is the state size of the function. We next consider the Sum of Even-Mansour (SoEM) construction, that instantiates the sum of permutations with the Even-Mansour construction. We prove that SoEM achieves tight $$2n{/}3$$-bit security if it is constructed from two independent permutations and two randomly drawn keys. We also demonstrate a birthday bound attack if either the permutations or the keys are identical. Finally, we present the Sum of Key Alternating Ciphers (SoKAC) construction, a translation of Encrypted Davies-Meyer Dual to a public permutation based setting, and show that SoKAC achieves tight $$2n{/}3$$-bit security even when a single key is used.
2019
JOFC
A Practical Forgery Attack on Lilliput-AE
Lilliput-AE is a tweakable block cipher submitted as a candidate to the NIST lightweight cryptography standardization process. It is based upon the lightweight block cipher Lilliput, whose cryptanalysis so far suggests that it has a large security margin. In this note, we present an extremely efficient forgery attack on Lilliput-AE: Given a single arbitrary message of length about $$2^{36}$$ 2 36 bytes, we can instantly produce another valid message that leads to the same tag, along with the corresponding ciphertext. The attack uses a weakness in the tweakey schedule of Lilliput-AE which leads to the existence of a related-tweak differential characteristic with probability 1 in the underlying block cipher. The weakness we exploit, which does not exist in Lilliput, demonstrates the potential security risk in using a very simple tweakey schedule in which the same part of the key/tweak is reused in every round, even when round constants are employed to prevent slide attacks. Following this attack, the Lilliput-AE submission to NIST was tweaked.
2017
TOSC
Refined Probability of Differential Characteristics Including Dependency Between Multiple Rounds
The current paper studies the probability of differential characteristics for an unkeyed (or with a fixed key) construction. Most notably, it focuses on the gap between two probabilities of differential characteristics: probability with independent S-box assumption, pind, and exact probability, pexact. It turns out that pexact is larger than pind in Feistel network with some S-box based inner function. The mechanism of this gap is then theoretically analyzed. The gap is derived from interaction of S-boxes in three rounds, and the gap depends on the size and choice of the S-box. In particular the gap can never be zero when the S-box is bigger than six bits. To demonstrate the power of this improvement, a related-key differential characteristic is proposed against a lightweight block cipher RoadRunneR. For the 128-bit key version, pind of 2−48 is improved to pexact of 2−43. For the 80-bit key version, pind of 2−68 is improved to pexact of 2−62. The analysis is further extended to SPN with an almost-MDS binary matrix in the core primitive of the authenticated encryption scheme Minalpher: pind of 2−128 is improved to pexact of 2−96, which allows to extend the attack by two rounds.