International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 17 November 2025

Pratima Jana, Ratna Dutta
ePrint Report ePrint Report
Password-based Authenticated Key Exchange (${\sf PAKE}$) is a widely acknowledged, promising security mechanism for establishing secure communication between devices. It enables two parties to mutually authenticate each other over insecure networks and generate a session key using a low-entropy password. However, the existing $\mathsf{PAKE}$ protocols encounter significant challenges concerning both security and efficiency in the context of the \textit{Internet of Things} (IoT). In response to these challenges, we contribute to the advancement of post-quantum secure $\mathsf{PAKE}$ protocols tailored for IoT applications, enriching the existing landscape. In this study, we introduce two novel protocols, $\mathsf{PAKE}$-\textup{I} and $\mathsf{PAKE}$-\textup{II}, designed to address these concerns and enhance the security standards of $\mathsf{PAKE}$ protocol. While $\mathsf{PAKE}$-\textup{I} is secure under lattice-based hardness assumptions, $\mathsf{PAKE}$-\textup{II} derives its security from isogeny-based hard problems. Our lattice-based protocol $\mathsf{PAKE}$-\textup{I} is secure based on the \textit{Pairing with Errors} ($\mathsf{PWE}$) assumption and the \textit{Decision Ring Learning with Errors} ($\mathsf{DRLWE}$) assumption and our isogeny-based protocol $\mathsf{PAKE}$-\textup{II} is secure based on the hardness of the \textit{Group Action Inverse Problem} ($\mathsf{GAIP}$) and the \textit{Commutative SuperSingular Diffie-Hellman} ($\mathsf{CSSDH}$) problem in the Random Oracle Model $(\mathsf{ROM})$. We present a comprehensive security proof in a conventional game-based indistinguishability security model that addresses offline dictionary attacks, replay attacks, compromise attacks for both parties (client and server) and perfect forward secrecy. Additionally, our proposed $\mathsf{PAKE}$ protocols are the first post-quantum secure $\mathsf{PAKE}$s that achieve identity privacy and resistance to pre-computation attacks. Through rigorous performance evaluations, the paper demonstrates that the proposed $\mathsf{PAKE}$ schemes are ultralight and exhibit notable advantages in terms of total computation cost and enhanced security properties when compared to the existing protocols. More positively, both the proposed $\mathsf{PAKE}$ are optimal in the sense that they achieve mutual authentication explicitly in only three rounds which is the least number of rounds required for acquiring mutual authentication between two parties.
Expand

Additional news items may be found on the IACR news page.