IACR News item: 18 September 2025
Shengnan Zhao, Junyu Lu, Yuchen Huang, Dongdong Miao, Chuan Zhao
Private information retrieval (PIR) enables a client to fetch a record from databases held by untrusted servers while hiding the access pattern (index or keyword) from the servers.
In practical settings, however, data objects (e.g., articles, videos) are commonly tagged with multiple identifiers, which can be structured as {index, value, keywords}. Current PIR schemes are constrained to retrieving records based on a single index or a single keyword, and cannot efficiently handle conjunctive queries requiring multiple keywords. To address this limitation, we propose Mk-PIR, a PIR scheme that enables a client to retrieve records that match all specified keywords simultaneously.
We propose two distinct constructions: $\textsf{MkPIR}^\mathbf{I}$, an inverted-index-based solution built upon our Oblivious Set Intersection (OSI) primitive, which enables private intersection computation on the server side without revealing client queries; and $\textsf{MkPIR}^\mathbf{F}$, a forward-index-based solution utilizing our Private Subset Determination (PSD), which privately outputs matching indices by verifying subset relationships.
Two constructions adapt to diverse database configurations where keywords are not required to be the primary key. Experimental results show that the average time to determine whether an index satisfies multiple keywords ranges from 0.5 to 332 ms, demonstrating that Mk-PIR achieves flexible query capabilities with modest performance overhead.
Additional news items may be found on the IACR news page.