International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 05 September 2025

Gilad Asharov, Eliran Eiluz, Ilan Komargodski, Wei-Kai Lin
ePrint Report ePrint Report
Oblivious RAM (ORAM) is a central cryptographic primitive that enables secure memory access while hiding access patterns. Among existing ORAM paradigms, hierarchical ORAMs were long considered impractical despite their asymptotic optimality. However, recent advancements (FutORAMa, CCS'23) demonstrate that hierarchical ORAM-based schemes can be made efficient given sufficient client-side memory. In this work, we present a new hierarchical ORAM construction that achieves practical performance without requiring large local memory.

From a theoretical standpoint, we identify that there is a gap in the literature concerning the asymmetric setting, where the logical word size is asymptotically smaller than the physical memory block size. In this scenario, the best-known construction (OptORAMa, J.\ ACM '23,) turns every logical query into $O(\log N)$ physical memory accesses (quantity known as ``I/O overhead''), whereas the lower bound of Komargodski and Lin (CRYPTO'21) implies that $\Omega(\log N /\log\log N)$ accesses are needed.

We close this gap by constructing an optimal ORAM for the asymmetric setting, achieving an I/O overhead of $O(\log N / \log\log N)$. Our construction features exceptionally small constants (between 1 and 4, depending on the block size) and operates without requiring large local memory. We implement our scheme and compare it to PathORAM (CCS'13) and FutORAMa, demonstrating significant improvement. For 1TB logical memory, our construction obtains $\times 10$-$\times 30$ reduction in I/O overhead and bandwidth compared to PathORAM, and $\times 7$--$\times 26$ improvement over FutORAMa. This improvement applies when those schemes weren't designed to operate on large blocks, as in our settings, and the exact improvement depends on the physical block size and the exact local memory available.
Expand

Additional news items may be found on the IACR news page.