International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 22 July 2025

Lucas C. Cardoso, Marcos A. Simplicio Jr
ePrint Report ePrint Report
In 2009, Galindo and Garcia proposed the usage of concatenated Schnorr signatures for the hierarchical delegation of public keys, creating a quite efficient identity-based signature scheme (IBS). Essentially, the scheme builds upon the Schnorr signature scheme to generate a primary signature, part of which is then used as a secret key to produce signatures on subsequent messages. The resulting IBS is proven secure against existential forgery on adaptive chosen-message and adaptive identity attacks using variants of the Forking Lemma. In this paper, our goal is to answer the following question: would it be feasible to build upon the widely used elliptic curve digital signature algorithm (ECDSA) scheme to obtain a similarly secure and efficient IBS? We answer this affirmatively, opening interesting possibilities not only for identity-based signatures with ECDSA but also for applications such as secure credential delegation. This latter application is of particular interest considering the wide support for ECDSA in web- and cloud-oriented authentication systems (e.g., based on JSON Web Tokens). The resulting scheme is proven secure, combining the Bijective Random Oracle model and the existential unforgeability game in an identity-based setup. Our results show that even considering ECDSA's non-linear characteristic and more convoluted verification process when compared to Schnorr signatures, it is possible to obtain shorter signatures than Galindo-Garcia's scheme.
Expand

Additional news items may be found on the IACR news page.