IACR News item: 30 June 2025
Prabhanjan Ananth, Amit Behera, Zikuan Huang
Quantum copy-protection is a foundational notion in quantum cryptography that leverages the governing principles of quantum mechanics to tackle the problem of software anti-piracy. Despite progress in recent years, precisely characterizing the class of functionalities that can be copy-protected is still not well understood.
Two recent works, by [Coladangelo and Gunn, STOC 2024] and [Ananth and Behera, CRYPTO 2024, showed that puncturable functionalities can be copy-protected. Both works have significant caveats with regard to the underlying cryptographic assumptions and additionally restrict the output length of the functionalities to be copy-protected. In this work, we make progress towards simultaneously addressing both caveats. We show the following:
- Revisiting Unclonable Puncturable Obfuscation (UPO): We revisit the notion of UPO introduced by [Ananth and Behera, CRYPTO 2024]. We present a new approach to construct UPO and a variant of UPO, called independent-secure UPO. Unlike UPO, we show how to base the latter notion on well-studied assumptions.
- Copy-Protection from Independent-secure UPO: Assuming independent-secure UPO, we show that any m-bit, for m ≥ 2, puncturable functionality can be copy-protected.
- Copy-Protection from UPO: Assuming UPO, we show that any 1-bit puncturable functionality can be copy-protected. The security of copy-protection holds against identical challenge distributions.
Additional news items may be found on the IACR news page.