International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 17 June 2025

Keitaro Hashimoto, Kyosuke Yamashita, Keisuke Hara
ePrint Report ePrint Report
A multi-designated verifier signature (MDVS) is a digital signature that empowers a signer to designate specific verifiers capable of verifying signatures. Notably, designated verifiers are allowed to not only verify signatures but also simulate “fake” signatures indistinguishable from real ones produced by the original signer. Since this property is useful for realizing off-the-record (i.e., deniable) communication in group settings, MDVS is attracting attention in secure messaging. Recently, Damgård et al. (TCC’20) and Chakraborty et al. (EUROCRYPT’23) have introduced new MDVS schemes, allowing a subset of designated verifiers to simulate signatures in contrast to the conventional one, which requires all designated verifiers for signature simulation. They also define a stronger notion of security for them. This work delves into this new MDVS and offers a comprehensive formalization. We identify all possible security levels of MDVS schemes in subset simulations and prove that some of them are not feasible. Furthermore, we demonstrate that MDVS schemes meeting the security notion defined by Chakraborty et al. imply IND-CCA secure public-key encryption schemes. Beyond formalization, we present new constructions of MDVS schemes in subset simulation. Notably, we introduce a new construction of strongly secure MDVS schemes based on ring signatures and public-key encryption, accompanied by a generic conversion for achieving consistency through non-interactive zero-knowledge arguments. Finally, we evaluate the efficiency of our MDVS schemes in classical and post-quantum settings, showing their practicality.
Expand

Additional news items may be found on the IACR news page.