International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 27 May 2015

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégo
ePrint Report ePrint Report
The prevailing approach for building masked algorithms that can resist higher-order differential power analysis is to develop gadgets, that is, masked gates used as atomic blocks, that securely implement basic operations from the original algorithm, and then to compose these gadgets, introducing refresh operations at strategic places to guarantee that the complete circuit is protected. These compositional principles are embedded in so-called masking transformations, which are used as heuristics to achieve secure composition. Unfortunately, these transformations are seldom proved secure rigorously, and in fact, sometimes yield algorithms that are not secure against higher-order attacks. In this paper, we define a notion of strong simulatability that naturally supports compositional principles. Although this notion is stronger than the notion of simulatability (or perfect simulation) from previous works, we show that it is satisfied by several gadgets from the literature, including the mask refreshing gadget from Duc, Dziembowski and Faust (Eurocrypt 2014), the secure multiplication gadget from Rivain and Prouff (CHES 2010) and the secure multiplication gadget between dependent inputs from Coron et al. (FSE 2013). Then, we exploit a tight connection between strong simulatability and probabilistic information flow policies to define a (fine-grained, incremental) type system that checks (strong) simulatability of algorithms. We use the type system to validate a novel and automated transformation that outputs masked algorithms at arbitrary orders. Finally, we measure the performance of masked algorithms of AES, Keccak-f, Simon, and Speck generated by our transformation. The results are encouraging: for AES, masking at order 5, 20, and 100 respectively incur slowdowns of 100x, 750x, and x1500 w.r.t. the unmasked implementation given as input to our tool.

Expand

Additional news items may be found on the IACR news page.