International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 02 March 2015

Pablo Azar, Shafi Goldwasser, Sunoo Park
ePrint Report ePrint Report
The availability of vast amounts of data is changing how we can make medical discoveries, predict global market trends, save energy, improve our infrastructures, and develop new educational strategies. One obstacle to this revolution is the willingness of different entities to share their data with others.

The theory of secure multiparty computation (MPC) seemingly addresses this problem in the best way possible. Namely, parties learn the minimum necessary information: the value of the function computed on their joint data and nothing else. However, the theory of MPC does not deal with an important aspect: {\\it when} do different players receive their output? In time-sensitive applications, the timing and order of output discovery may be another important deciding factor in whether parties choose to share their data via the MPC.

In this work, we incorporate time and order of output delivery into the theory of MPC. We first extend classical MPC to \\emph{ordered MPC} where different players receive their outputs according to an order which in itself is computed on the inputs to the protocol, and to refine the classical notions of guaranteed output delivery and fairness to require instead \\emph{ordered output delivery} and \\emph{prefix-fairness}. We then define {\\it timed-delay MPCs} where explicit time delays are introduced into the output delivery schedule. We show general completeness theorems for ordered MPCs and timed-delay MPCs. We also introduce a new primitive called \\emph{time-line puzzles}, which are a natural extension of classical timed-release crypto, in which multiple events can be serialized in time.

Next, we show how ordered MPC can give rise to MPCs which are provably ``worth\'\' joining, in competitive settings where relative time of output discovery may deter parties from joining the protocol. We formalize a model of collaboration and design a mechanism in which $n$ self-interested parties can decide, based on their inputs, on an ordering of output delivery and a distribution of outputs to be delivered in the mandated order. The mechanism guarantees a higher reward \\emph{for all participants} when joining an ordered MPC or declares that such a guarantee is impossible to achieve. We show a polynomial time algorithm to compute the mechanism for a range of model settings.

Expand

Additional news items may be found on the IACR news page.