International Association for Cryptologic Research

IACR News Central

Get an update on changes of the IACR web-page here. For questions, contact newsletter (at) You can also receive updates via:

To receive your credentials via mail again, please click here.

You can also access the full news archive.

Further sources to find out about changes are CryptoDB, ePrint RSS, ePrint Web, Event calender (iCal).

21:17 [Pub][ePrint] A low complexity bit-parallel Montgomery multiplier based on squaring for trinomials , by Yin Li and Yiyang Chen

  In this paper, we present a new bit-parallel Montgomery multiplier for $GF(2^m)$ generated with irreducible trinomials. A newly proposed divide-and-conquer approach is applied to simplify the polynomial multiplication while the Montgomery squaring is induced to simplify the modular reduction. Meanwhile, this design effectively exploits the overlapped elements in squaring and reduction operation to reduce the space complexity. As a result, the proposed multiplier has about 25\\% reduced space complexity compared with previous multipliers, with a slight increase of time complexity. Among five binary fields recommended by NIST for the ECDSA (Elliptic Curve Digital Signature Algorithm), there exist two fields, i.e., $GF(2^{409})$, $GF(2^{233})$,

defined by trinomials. For these two fields, we show that our proposal outperforms the previous best known results if the space and time complexities are both considered.

21:17 [Pub][ePrint] Chosen Ciphertext Security via Point Obfuscation, by Takahiro Matsuda and Goichiro Hanaoka

  In this paper, we show two new constructions of chosen ciphertext secure (CCA secure) public key encryption (PKE) from general assumptions. The key ingredient in our constructions is an obfuscator for point functions with multi-bit output (MBPF obfuscators, for short), that satisfies some (average-case) indistinguishability-based security, which we call AIND security, in the presence of hard-to-invert auxiliary input. Specifically, our first construction is based on a chosen plaintext secure PKE scheme and an MBPF obfuscator satisfying the AIND security in the presence of computationally hard-to-invert auxiliary input. Our second construction is based on a lossy encryption scheme and an MBPF obfuscator satisfying the AIND security in the presence of statistically hard-to-invert auxiliary input. To clarify the relative strength of AIND security, we show the relations among security notions for MBPF obfuscators, and show that AIND security with computationally (resp. statistically) hard-to-invert auxiliary input is implied by the average-case virtual black-box (resp. virtual grey-box) property with the same type of auxiliary input. Finally, we show that a lossy encryption scheme can be constructed from an obfuscator for point functions (point obfuscator) that satisfies re-randomizability and a weak form of composability in the worst-case virtual grey-box sense. This result, combined with our second generic construction and several previous results on point obfuscators and MBPF obfuscators, yields a CCA secure PKE scheme that is constructed \\emph{solely} from a re-randomizable and composable point obfuscator. We believe that our results make an interesting bridge that connects CCA secure PKE and program obfuscators, two seemingly isolated but important cryptographic primitives in the area of cryptography.

21:17 [Pub][ePrint] Faster Maliciously Secure Two-Party Computation Using the GPU, by Tore Kasper Frederiksen and Thomas P. Jakobsen and Jesper Buus Nielsen

  We present a new protocol for maliciously secure two-partycomputation based on cut-and-choose of garbled circuits using the recent idea of ``forge-and-loose\'\' which eliminates around a factor 3 of garbled circuits that needs to be constructed and evaluated. Our protocol introduces a new way to realize the \"forge-and-loose\" approach which avoids an auxiliary secure two-party computation protocol, does not rely on any number theoretic assumptions and parallelizes well in a same instruction, multiple data (SIMD) framework.

With this approach we prove our protocol universally composable-secure against a malicious adversary assuming access to oblivious transfer, commitment and coin-tossing functionalities in the random oracle model.

Finally, we construct, and benchmark, a SIMD implementation of this protocol using a GPU as a massive SIMD device. The findings compare favorably with all previous implementations of maliciously secure, two-party computation.

21:17 [Pub][ePrint] STRIBOB: Authenticated Encryption from GOST R 34.11-2012 LPS Permutation, by Markku-Juhani O. Saarinen

  Authenticated encryption algorithms protect both the confidentiality and integrity of messages with a single processing pass. We show how to utilize the $L \\circ P \\circ S$ transform of the Russian GOST R 34.11-2012 standard hash ``Streebog\'\' to build an efficient, lightweight algorithm for Authenticated Encryption with Associated Data (AEAD) via the Sponge construction. The proposed algorithm ``StriBob\'\' has attractive security properties, is faster than the Streebog hash alone, twice as fast as the GOST 28147-89 encryption algorithm, and requires only a modest amount of running-time memory. StriBob is a Round 1 candidate in the CAESAR competition.

18:17 [Pub][ePrint] Linear Extension Cube Attack on Stream Ciphers, by Liren Ding, Yongjuan Wang, Zhufeng Li

  Basing on the original Cube attack, this paper proposes an improved method of Cube attack on stream ciphers, which makes improvement on the pre-processing phase of the original attack. The new method can induce maxterms of higher-order from those of lower-order by the trade-off between time and space, thus recovering more key bits and reducing the search complexity on higher-dimension. In this paper, the improved attack is applied to Lili-128 algorithm and reduced variants of Trivium algorithm. We can recover 88 key bits of Lili-128 algorithm within time complexity of 2^14 and 48 key bits of Trivium algorithm can be recovered by cubes with dimension no larger than 8 when the initialization round is 576, the results are much better than those of the original attacks.

18:17 [Pub][ePrint] Cryptanalysis of the MORE symmetric key fully homomorphic encryption scheme, by Boaz Tsaban and Noam Lifshitz

  The fully homomorphic symmetric encryption scheme \\emph{MORE} encrypts

keys by conjugation with a random invertible matrix over an RSA modulus.

We provide a two known-ciphertexts cryptanalysis recovering a linear dependence among

the two encrypted keys.

18:17 [Pub][ePrint] Forgery on Stateless CMCC, by Guy Barwell

  We present attacks against CMCC that invalidate the claimed security of integrity protection and misuse resistance. We exploit the fact zero-padding is used on both the message and authenticated data and demonstrate how one may generate a forgery with a single call to the encryption oracle. From this we calculate the ciphertext of the chosen message, yielding a forgery and so breaking INT-CTXT. In the nonce-reuse setting, existence of a forgery leads directly to a 2-query distinguisher.

18:17 [Pub][ePrint] Making RSA-PSS Provably Secure Against Non-Random Faults, by Gilles Barthe and François Dupressoir and Pierre-Alain Fouque and Benjamin Grégoire and Mehdi Tibouchi and Jean-Christophe Zapalowicz

  RSA-CRT is the most widely used implementation for RSA signatures. However, deterministic and many probabilistic RSA signatures based on CRT are vulnerable to fault attacks. Nevertheless, Coron and Mandal (Asiacrypt 2009) show that the randomized PSS padding protects RSA signatures against random faults. In contrast, Fouque et al. (CHES 2012) show that PSS padding does not protect against certain non-random faults that can be injected in widely used implementations based on the Montgomery modular multiplication. In this article, we prove the security of an infective countermeasure against a large class of non-random faults; the proof extends Coron and Mandal\'s result to a strong model where the adversary can force the faulty signatures to be a multiple of one of the prime factors of the RSA modulus. Such non-random faults induce more complex probability distributions than in the original proof, which we analyze using careful estimates of exponential sums attached to suitable rational functions. The security proof is formally verified using appropriate extensions of EasyCrypt, and provides the first application of formal verification to provable (i.e. reductionist) security in the context of fault attacks.

18:17 [Pub][ePrint] Practical and Secure Query Processing for Large-scale Encrypted Cloud Storage Systems, by Fangquan Cheng and Qian Wang and Kui Ren and Zhiyong Peng

  With the increasing popularity of cloud-based data services, data owners are highly motivated to store their huge amount of (potentially sensitive) personal data files on remote servers in encrypted form. Clients later can query over the encrypted database to retrieve files of interest while preventing database servers from learning private information about the contents of files and queries.

In this paper, we investigate new and novel SSE designs which meet all practical properties, including one-round multi-keyword query, comprehensive and practical privacy protection, sublinear search time, and efficient dynamic data operation support. Moreover, our solutions can well support parallel search and run for very large-scale cloud databases. Compared to the existing SSE solutions,

our solution is highly compact, efficient and flexible. Its performance and security are carefully characterized by rigorous analysis. Experimental evaluations conducted over large representative real-word data sets demonstrate that compared with the state-of-the-art our solution indeed achieves desirable properties for large-scale encrypted database systems.

18:17 [Pub][ePrint] Enhanced Lattice-Based Signatures on Reconfigurable Hardware, by Thomas P\\\"oppelmann and L{\\\'e}o Ducas and Tim G\\\"uneysu

  The recent BLISS signature scheme showed that lattice-based constructions have evolved to practical alternatives to RSA or ECC. Besides reasonably small signatures with 5600 bits for a 128-bit level of security, BLISS enables extremely fast signing and signature verification in software. However, due to the complex sampling of Gaussian noise with high precision, it is not clear whether this scheme can be mapped efficiently to embedded devices. In particular, the software approach of using large precomputed tables for Gaussian sampling cannot be transferred to constrained computing environments, such as FPGAs with limited memory. In this work we present techniques for an efficient CDT-based Gaussian sampler on reconfigurable hardware involving Peikert\'s convolution lemma and the Kullback-Leibler divergence. Based on our enhanced sampler design, we provide a first BLISS architecture for Xilinx Spartan-6 FPGAs that integrates fast FFT/NTT-based polynomial multiplication, sparse multiplication, and a Keccak hash function. With on our core a signing operations requires 123 \\textmu s on average, using 2,584 slices, 8 BRAMs, and 6 DSPs. Verification takes slightly less with 70 \\textmu s.

18:17 [Pub][ePrint] Certification and Efficient Proofs of Committed Topology Graphs, by Thomas Gross

  Digital signature schemes are a foundational cryptographic building block in certification and the projection of trust. Based on a signature scheme on committed graphs, we propose a toolkit of certification and proof methods to sign committed topology graphs

and to prove properties of their certificates in zero-knowledge.

This toolkit allows an issuer, such as an auditor, to sign the topology representation of an infrastructure. The prover, such as an infrastructure provider, can then convince a verifier of topology properties, such as partitions, connectivity or isolation, without disclosing the structure of the topology itself. By that, we can achieve the certification of the structure of critical systems, such as infrastructure clouds or outsourced systems, while still maintaining confidentiality. We offer zero-knowledge proofs of knowledge for a general specification language of security goals for virtualized infrastructures, such that high-level security goalscan be proven over the topology certificate. Our method builds upon the Camenisch-Lysyanskaya signature scheme, is based on honest-verifier proofs and the strong RSA assumption.