International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 03 June 2012

Daniel J. Bernstein, Tanja Lange
ePrint Report ePrint Report
Pollard\'s rho algorithm, along with parallelized, vectorized, and negating variants, is the standard method to compute discrete logarithms in generic prime-order groups.

This paper presents two reasons that Pollard\'s rho algorithm

is farther from optimality than generally believed.

First, ``higher-degree local anti-collisions\'\'

make the rho walk less random than the predictions made by the conventional Brent--Pollard heuristic.

Second, even a truly random walk is suboptimal,

because it suffers from ``global anti-collisions\'\' that can at least partially be avoided.

For example, after (1.5+o(1))\\sqrt(l) additions in a group of order l (without fast negation),

the baby-step-giant-step method has probability 0.5625+o(1)

of finding a uniform random discrete logarithm;

a truly random walk would have probability 0.6753\\ldots+o(1);

and this paper\'s new two-grumpy-giants-and-a-baby method has probability 0.71875+o(1).

Expand

Additional news items may be found on the IACR news page.