International Association for Cryptologic Research

International Association
for Cryptologic Research


Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis

Hoeteck Wee , NTT Research and ENS, Paris
David J. Wu , UT Austin
Search ePrint
Search Google
Presentation: Slides
Conference: ASIACRYPT 2023
Abstract: A functional commitment allows a user to commit to an input x \in {0, 1}^\ell and later open up the commitment to a value y = f(x) with respect to some function f. In this work, we focus on schemes that support fast verification. Specifically, after a preprocessing step that depends only on $f$, the verification time as well as the size of the commitment and opening should be sublinear in the input length \ell, We also consider the dual setting where the user commits to the function f and later, opens up the commitment at an input x. In this work, we develop two (non-interactive) functional commitments that support fast verification. The first construction supports openings to constant-degree polynomials and has a shorter CRS for a broad range of settings compared to previous constructions. Our second construction is a dual functional commitment for arbitrary bounded-depth Boolean circuits that supports fast verification with security from falsifiable assumptions. Both schemes are lattice-based and avoid non-black-box use of cryptographic primitives or lattice sampling algorithms. Security of both constructions rely on the \ell-succinct short integer solutions (SIS) assumption, a falsifiable q-type generalization of the SIS assumption (Preprint 2023). In addition, we study the challenges of extending lattice-based functional commitments to extractable functional commitments, a notion that is equivalent to succinct non-interactive arguments (when considering openings to quadratic relations). We describe a general methodology that heuristically breaks the extractability of our construction and provides evidence for the implausibility of the knowledge k-R-ISIS assumption of Albrecht et al. (CRYPTO 2022) that was used in several constructions of lattice-based succinct arguments. If we additionally assume hardness of the standard inhomogeneous SIS assumption, we obtain a direct attack on a variant of the extractable linear functional commitment of Albrecht et al.
  title={Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis},
  author={Hoeteck Wee and David J. Wu},