International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ke-fei Chen

Publications

Year
Venue
Title
2008
EPRINT
A Tamper-Evident Voting Machine Resistant to Covert Channels
To provide a high level of security guarantee cryptography is introduced into the design of the voting machine. The voting machine based on cryptography is vulnerable to attacks through covert channels. An adversary may inject malicious codes into the voting machine and make it leak vote information unnoticeably by exploiting the randomness used in encryptions and zero-knowledge proofs. In this paper a voting machine resistant to covert channels is designed. It has the following properties: Firstly, it is tamper-evident. The randomness used by the voting machine is generated by the election authority. The inconsistent use of the randomness can be detected by the voter from examining a destroyable verification code. Even if malicious codes are run in the voting machine attacks through subliminal channels are thwarted. Next, it is voter-verifiable. The voter has the ability to verify if the ballot cast by the machine is consistent with her intent without doing complicated cryptographic computation. Finally, the voting system is receipt-free. Vote-buying and coercion are prevented.
2007
EPRINT
Filling the Gap between Voters and Cryptography in e-Voting
Wei Han Dong Zheng Ke-fei Chen
Cryptography is an important tool in the design and implementation of electronic voting schemes for it provides the property of verifiability, which is not provided in the traditional voting. But in the real life, neither can most voters understand the profound theory of cryptographic e-voting nor can they perform the complicated cryptographic computation. An e-voting system is presented in this paper to leverage the use of cryptography between theory and practice. It combines the advantages of Moran-Naor's voting scheme and voting schemes based on homomorphic encryption. It makes use of cryptographic techniques, but it hides the details of cryptographic computation from voters. Voters can be convinced that the ballot is cast as intended. The tally can be verified in public. Compared with Moran-Naor's voting scheme, the new system has three advantages: the ballots can be recovered when the voting machine breaks down, the costly cut-and-choose zero-knowledge proofs for shuffling votes made by the voting machine are avoided and the partial tally result in each voting machine is kept secret.
2006
EPRINT
Some Remarks on the TKIP Key Mixing Function of IEEE 802.11i
Wei Han Dong Zheng Ke-fei Chen
Temporal Key Integrity Protocol (TKIP) is a sub-protocol of IEEE 802.11i. TKIP remedies some security flaws in Wired Equivalent Privacy (WEP) Protocol. TKIP adds four new algorithms to WEP: a Message Integrity Code (MIC) called Michael, an Initialization Vector (IV) sequencing discipline, a key mixing function and a re-keying mechanism. The key mixing function, also called temporal key hash, de-correlates the IVs from weak keys. Some cryptographic properties of the S-box used in the key mixing function are investigated in this paper, such as regularity, avalanche effect, differ uniform and linear structure. V.Moen, H.Raddum and K.J.Hole point out that there exists a temporal key recovery attack in TKIP key mixing function. In this paper a method is proposed to defend against the attack, and the resulting effect on performance is also discussed.

Program Committees

Asiacrypt 2006

Coauthors

Xiaofeng Chen (1)
Wei Han (3)
Tao Hao (1)
Dong Zheng (3)