International Association for Cryptologic Research

International Association
for Cryptologic Research


Adam O’Neill


Toward RSA-OAEP Without Random Oracles 📺
Nairen Cao Adam O’Neill Mohammad Zaheri
We show new partial and full instantiation results under chosen-ciphertext security for the widely implemented and standardized RSA-OAEP encryption scheme of Bellare and Rogaway (EUROCRYPT 1994) and two variants. Prior work on such instantiations either showed negative results or settled for “passive” security notions like IND-CPA. More precisely, recall that RSA-OAEP adds redundancy and randomness to a message before composing two rounds of an underlying Feistel transform, whose round functions are modeled as random oracles (ROs), with RSA. Our main results are: Either of the two oracles (while still modeling the other as a RO) can be instantiated in RSA-OAEP under IND-CCA2 using mild standard-model assumptions on the round functions and generalizations of algebraic properties of RSA shown by Barthe, Pointcheval, and Báguelin (CCS 2012). The algebraic properties are only shown to hold at practical parameters for small encryption exponent ( $$e=3$$ ), but we argue they have value for larger e as well. Both oracles can be instantiated simultaneously for two variants of RSA-OAEP, called “ t -clear” and “ s -clear” RSA-OAEP. For this we use extractability-style assumptions in the sense of Canetti and Dakdouk (TCC 2010) on the round functions, as well as novel yet plausible “XOR-type” assumptions on RSA. While admittedly strong, such assumptions may nevertheless be necessary at this point to make positive progress. In particular, our full instantiations evade impossibility results of Shoup (J. Cryptology 2002), Kiltz and Pietrzak (EUROCRYPT 2009), and Bitansky et al. (STOC 2014). Moreover, our results for s -clear RSA-OAEP yield the most efficient RSA-based encryption scheme proven IND-CCA2 in the standard model (using bold assumptions on cryptographic hashing) to date.
Leakage Resilience from Program Obfuscation
The literature on leakage-resilient cryptography contains various leakage models that provide different levels of security. In the bounded leakage model (Akavia et al.—TCC 2009 ), it is assumed that there is a fixed upper bound L on the number of bits the attacker may leak on the secret key in the entire lifetime of the scheme. Alternatively, in the continual leakage model (Brakerski et al.—FOCS 2010 , Dodis et al.—FOCS 2010 ), the lifetime of a cryptographic scheme is divided into “time periods” between which the scheme’s secret key is updated. Furthermore, in its attack the adversary is allowed to obtain some bounded amount of leakage on the current secret key during each time period. In the continual leakage model, a challenging problem has been to provide security against leakage on key updates , that is, leakage that is a function of not only the current secret key but also the randomness used to update it. We propose a modular approach to overcome this problem based on program obfuscation. Namely, we present a compiler that transforms any public key encryption or signature scheme that achieves a slight strengthening of continual leakage resilience, which we call consecutive continual leakage resilience, to one that is continual leakage resilient with leakage on key updates, assuming indistinguishability obfuscation (Barak et al.—CRYPTO 2001 , Garg et al.—FOCS 2013 ). Under stronger forms of obfuscation, the leakage rate tolerated by our compiled scheme is essentially as good as that of the starting scheme. Our compiler is derived by making a connection between the problems of leakage on key updates and so-called sender-deniable encryption (Canetti et al.—CRYPTO 1997 ), which was recently constructed based on indistinguishability obfuscation by Sahai and Waters (STOC 2014 ). In the bounded leakage model, we give an approach to constructing leakage-resilient public key encryption from program obfuscation based on the public key encryption scheme of Sahai and Waters (STOC 2014 ). In particular, we achieve leakage-resilient public key encryption tolerating L bits of leakage for any L from $${\mathsf {iO}} $$ iO and one-way functions. We build on this to achieve leakage-resilient public key encryption with optimal leakage rate of $$1-o(1)$$ 1 - o ( 1 ) based on stronger forms of obfuscation and collision-resistant hash functions. Such a leakage rate is not known to be achievable in a generic way based on public key encryption alone. We then develop additional techniques to construct public key encryption that is (consecutive) continual leakage resilient under appropriate assumptions, which we believe is of independent interest.
A Unified Framework for Trapdoor-Permutation-Based Sequential Aggregate Signatures
Craig Gentry Adam O’Neill Leonid Reyzin
We give a framework for trapdoor-permutation-based sequential aggregate signatures (SAS) that unifies and simplifies prior work and leads to new results. The framework is based on ideal ciphers over large domains, which have recently been shown to be realizable in the random oracle model. The basic idea is to replace the random oracle in the full-domain-hash signature scheme with an ideal cipher. Each signer in sequence applies the ideal cipher, keyed by the message, to the output of the previous signer, and then inverts the trapdoor permutation on the result. We obtain different variants of the scheme by varying additional keying material in the ideal cipher and making different assumptions on the trapdoor permutation. In particular, we obtain the first scheme with lazy verification and signature size independent of the number of signers that does not rely on bilinear pairings.Since existing proofs that ideal ciphers over large domains can be realized in the random oracle model are lossy, our schemes do not currently permit practical instantiation parameters at a reasonable security level, and thus we view our contribution as mainly conceptual. However, we are optimistic tighter proofs will be found, at least in our specific application.
Parameter-Hiding Order Revealing Encryption
Order-revealing encryption (ORE) is a primitive for outsourcing encrypted databases which allows for efficiently performing range queries over encrypted data. Unfortunately, a series of works, starting with Naveed et al. (CCS 2015), have shown that when the adversary has a good estimate of the distribution of the data, ORE provides little protection. In this work, we consider the case that the database entries are drawn identically and independently from a distribution of known shape, but for which the mean and variance are not (and thus the attacks of Naveed et al. do not apply). We define a new notion of security for ORE, called parameter-hiding ORE, which maintains the secrecy of these parameters. We give a construction of ORE satisfying our new definition from bilinear maps.