International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

22 November 2025

Samuel Dittmer, Rohit Nema, Rafail Ostrovsky
ePrint Report ePrint Report
Securely shuffling a secret-shared list is a vital sub-protocol in numerous applications, including secure sorting, secure list merging, secure graph proessing, oblivious RAM, and anonymous broadcast. We demonstrate how to convert the folklore constant-round protocol for secure shuffling, which employs a delegated Fisher-Yates shuffle using rerandomizable encryption, into a maliciously secure constant-round protocol. This gives the first protocol that has a linear end-to-end time for a two-party secret-shared shuffle with malicious security.

We prove the security of our protocol under the ``linear-only'' assumption on the homomorphic encryption system. We also demonstrate that another assumption, namely weak predicability, is sufficient and that it is both weaker than the linear-only assumption and sufficient for security.
Expand
Ittai Abraham, Yuval Efron, Ling Ren
ePrint Report ePrint Report
On the road to eliminating censorship from modern blockchain protocols, recent work in consensus has explored protocol design choices that delegate the duty of block assembly away from a single consensus leader and instead to multiple parties, referred to as includers. As opposed to the traditional leader-based approach, which guarantees transaction inclusion in a block produced by the next correct leader, the multiple includer approach allows blockchain protocols to provide a strong censorship-resistance property for users: A timely submitted transaction is guaranteed to be included in the next confirmed block, regardless of the leader's behavior. Such a guarantee, however, comes at the cost of 2 additional rounds of latency to block confirmation, compared to the leader-based approach. Is this cost necessary? We introduce the Censorship Resistant Byzantine Broadcast (CRBB) problem, a one-shot variant that distills the core functionality underlying the multiple-includer design paradigm. We then provide a full characterization, both in synchrony and partial synchrony, of the achievable latency of CRBB in executions with a correct leader, which is the most relevant case to practice. Our main result is an inherent latency cost of two additional rounds compared to the classic Byzantine Broadcast (BB) problem. For example, synchronous protocols for CRBB require 4 rounds whenever BB requires 2 rounds. Similarly, up to a small constant in the resilience, partial synchrony protocols for CRBB require 5 rounds whenever BB requires 3 rounds.
Expand
◄ Previous Next ►