IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
21 March 2025
Amos Beimel
A secret-sharing scheme is a method by which a dealer distributes shares to parties such that only authorized subsets of parties can reconstruct the secret. Secret-sharing schemes are an important tool in cryptography and they are used as a building block in many secure protocols, e.g., secure multiparty computation protocols for arbitrary functionalities, Byzantine agreement, threshold cryptography, access control, attribute-based encryption, and weighted cryptography (e.g., stake-based blockchains). The collection of authorized sets that should be able to reconstruct the secret is called an access structure. The main goal in secret sharing is to minimize the share size in a scheme realizing an access structure. In most of this monograph, we will consider secret-sharing schemes with information-theoretic security, i.e., schemes in which unauthorized sets cannot deduce any information on the secret even when the set has unbounded computational power. Although research on secret-sharing schemes has been conducted for nearly 40 years, we still do not know what the optimal share size required to realize an arbitrary ?-party access structure is; there is an exponential gap between the best known upper bounds and the best known lower bounds on the share size.
In this monograph, we review the most important topics on secret sharing. We start by discussing threshold secret-sharing schemes in which the authorized sets are all sets whose size is at least some threshold ?; these are the most useful secret-sharing schemes. We then describe efficient constructions of secret-sharing schemes for general access structures; in particular, we describe constructions of linear secret-sharing schemes from monotone formulas and monotone span programs and provide a simple construction for arbitrary ?-party access structures with share size 2?? for some constant ? < 1. To demonstrate the importance of secret-sharing schemes, we show how they are used to construct secure multi-party computation protocols for arbitrary functions. We next discuss the main problem with known secret-sharing schemes – the large share size, which is exponential in the number of parties. We present the known lower bounds on the share size. These lower bounds are fairly weak, and there is a big gap between the lower and upper bounds. For linear secret-sharing schemes, which are a class of schemes based on linear algebra that contains most known schemes, exponential lower bounds on the share size are known. We then turn to study ideal secret-sharing schemes in which the share size of each party is the same as the size of the secret; these schemes are the most efficient secret-sharing schemes. We describe a characterization of the access structures that have ideal schemes via matroids. Finally, we discuss computational secret-sharing schemes, i.e., secret-sharing schemes that are secure only against polynomial-time adversaries. We show computational schemes for monotone and non-monotone circuits; these constructions are more efficient than the best known schemes with information-theoretic security.
In this monograph, we review the most important topics on secret sharing. We start by discussing threshold secret-sharing schemes in which the authorized sets are all sets whose size is at least some threshold ?; these are the most useful secret-sharing schemes. We then describe efficient constructions of secret-sharing schemes for general access structures; in particular, we describe constructions of linear secret-sharing schemes from monotone formulas and monotone span programs and provide a simple construction for arbitrary ?-party access structures with share size 2?? for some constant ? < 1. To demonstrate the importance of secret-sharing schemes, we show how they are used to construct secure multi-party computation protocols for arbitrary functions. We next discuss the main problem with known secret-sharing schemes – the large share size, which is exponential in the number of parties. We present the known lower bounds on the share size. These lower bounds are fairly weak, and there is a big gap between the lower and upper bounds. For linear secret-sharing schemes, which are a class of schemes based on linear algebra that contains most known schemes, exponential lower bounds on the share size are known. We then turn to study ideal secret-sharing schemes in which the share size of each party is the same as the size of the secret; these schemes are the most efficient secret-sharing schemes. We describe a characterization of the access structures that have ideal schemes via matroids. Finally, we discuss computational secret-sharing schemes, i.e., secret-sharing schemes that are secure only against polynomial-time adversaries. We show computational schemes for monotone and non-monotone circuits; these constructions are more efficient than the best known schemes with information-theoretic security.
Gal Arnon, Jesko Dujmovic, Yuval Ishai
We revisit the question of minimizing the proof length of designated-verifier succinct non-interactive arguments (dv-SNARGs) in the generic group model. Barta et al. (Crypto 2020) constructed such dv-SNARGs with inverse-polynomial soundness in which the proof consists of only two group elements. For negligible soundness, all previous constructions required a super-constant number of group elements.
We show that one group element suffices for negligible soundness. Concretely, we obtain dv-SNARGs (in fact, dv-SNARKs) with $2^{-\tau}$ soundness where proofs consist of one element of a generic group $\mathbb G$ and $O(\tau)$ additional bits. In particular, the proof length in group elements is constant even with $1/|\mathbb G|$ soundness error. In more concrete terms, compared to the best known SNARGs using bilinear groups, we get dv-SNARGs with roughly $2$x shorter proofs (with $2^{-80}$ soundness at a $128$-bit security level). We are not aware of any practically feasible proof systems that achieve similar succinctness, even fully interactive or heuristic ones.
Our technical approach is based on a novel combination of techniques for trapdoor hash functions and group-based homomorphic secret sharing with linear multi-prover interactive proofs.
We show that one group element suffices for negligible soundness. Concretely, we obtain dv-SNARGs (in fact, dv-SNARKs) with $2^{-\tau}$ soundness where proofs consist of one element of a generic group $\mathbb G$ and $O(\tau)$ additional bits. In particular, the proof length in group elements is constant even with $1/|\mathbb G|$ soundness error. In more concrete terms, compared to the best known SNARGs using bilinear groups, we get dv-SNARGs with roughly $2$x shorter proofs (with $2^{-80}$ soundness at a $128$-bit security level). We are not aware of any practically feasible proof systems that achieve similar succinctness, even fully interactive or heuristic ones.
Our technical approach is based on a novel combination of techniques for trapdoor hash functions and group-based homomorphic secret sharing with linear multi-prover interactive proofs.
Alessandro Budroni, Jesús-Javier Chi-Domínguez, Ermes Franch
Group actions have emerged as a powerful framework in post-quantum cryptography, serving as the foundation for various cryptographic primitives. The Lattice Isomorphism Problem (LIP) has recently gained attention as a promising hardness assumption for designing quantum-resistant protocols. Its formulation as a group action has opened the door to new cryptographic applications, including a commitment scheme and a linkable ring signatures.
In this work, we analyze the security properties of the LIP group action and present new findings. Specifically, we demonstrate that it fails to satisfy the weak unpredictability and weak pseudorandomness properties when the adversary has access to as few as three and two instances with the same secret, respectively. This significantly improves upon prior analysis by Budroni et al. (PQCrypto 2024).
As a direct consequence of our findings, we reveal a vulnerability in the linkable ring signature scheme proposed by Khuc et al. (SPACE 2024), demonstrating that the hardness assumption underlying the linkable anonymity property does not hold.
Yuxi Xue, Tianyu Zheng, Shang Gao, Bin Xiao, Man Ho Au
Sigma protocols ($\Sigma$-protocols) provide a foundational paradigm for constructing secure algorithms in privacy-preserving applications. To enhance efficiency, several extended models [BG18], [BBB+18], [AC20] incorporating various optimization techniques have been proposed as ``replacements'' for the original $\Sigma$-protocol. However, these models often lack the expressiveness needed to handle complex relations and hinder designers from applying appropriate instantiation and optimization strategies.
In this paper, we introduce a novel compressed $\Sigma$-protocol model that effectively addresses these limitations by providing concrete constructions for relations involving non-linear constraints. Our approach is sufficiently expressive to encompass a wide range of relations. Central to our model is the definition of doubly folded commitments, which, along with a proposed Argument of Knowledge, generalizes the compression and amortization processes found in previous models. Despite the ability to express more relations, this innovation also provides a foundation to discuss a general aggregation technique, optimizing the proof size of instantiated schemes.
To demonstrate the above statements, we provide a brief review of several existing protocols that can be instantiated using our model to demonstrate the versatility of our construction. We also present use cases where our generalized model enhances applications traditionally considered ``less compact'', such as binary proofs [BCC+15] and $k$-out-of-$n$ proofs [ACF21]. In conclusion, our new model offers a more efficient and expressive alternative to the current use of $\Sigma$-protocols, paving the way for broader applicability and optimization in cryptographic applications.
In this paper, we introduce a novel compressed $\Sigma$-protocol model that effectively addresses these limitations by providing concrete constructions for relations involving non-linear constraints. Our approach is sufficiently expressive to encompass a wide range of relations. Central to our model is the definition of doubly folded commitments, which, along with a proposed Argument of Knowledge, generalizes the compression and amortization processes found in previous models. Despite the ability to express more relations, this innovation also provides a foundation to discuss a general aggregation technique, optimizing the proof size of instantiated schemes.
To demonstrate the above statements, we provide a brief review of several existing protocols that can be instantiated using our model to demonstrate the versatility of our construction. We also present use cases where our generalized model enhances applications traditionally considered ``less compact'', such as binary proofs [BCC+15] and $k$-out-of-$n$ proofs [ACF21]. In conclusion, our new model offers a more efficient and expressive alternative to the current use of $\Sigma$-protocols, paving the way for broader applicability and optimization in cryptographic applications.
Juraj Belohorec, Pavel Dvořák, Charlotte Hoffmann, Pavel Hubáček, Kristýna Mašková, Martin Pastyřík
We present a unifying framework for proving the knowledge-soundness of KZG-like polynomial commitment schemes, encompassing both univariate and multivariate variants. By conceptualizing the proof technique of Lipmaa, Parisella, and Siim for the univariate KZG scheme (EUROCRYPT 2024), we present tools and falsifiable hardness assumptions that permit black-box extraction of the multivariate KZG scheme. Central to our approach is the notion of a canonical Proof-of-Knowledge of a Polynomial (PoKoP) of a polynomial commitment scheme, which we use to capture the extractability notion required in constructions of practical zk-SNARKs. We further present an explicit polynomial decomposition lemma for multivariate polynomials, enabling a more direct analysis of interpolating extractors and bridging the gap between univariate and multivariate commitments. Our results provide the first standard-model proofs of extractability for the multivariate KZG scheme and many of its variants under falsifiable assumptions.
Rutchathon Chairattana-Apirom, Franklin Harding, Anna Lysyanskaya, Stefano Tessaro
This paper formalizes the notion of server-aided anonymous credentials (SAACs), a new model for anonymous credentials (ACs) where, in the process of showing a credential, the holder is helped by additional auxiliary information generated in an earlier (anonymous) interaction with the issuer. This model enables lightweight instantiations of 'publicly verifiable and multi-use' ACs from pairing-free elliptic curves, which is important for compliance with existing national standards. A recent candidate for the EU Digital Identity Wallet, BBS#, roughly adheres to the SAAC model we have developed; however, it lacks formal security definitions and proofs.
In this paper, we provide rigorous definitions of security for SAACs, and show how to realize SAACs from the weaker notion of keyed-verification ACs (KVACs) and special types of oblivious issuance protocols for zero-knowledge proofs. We instantiate this paradigm to obtain two constructions: one achieves statistical anonymity with unforgeability under the Gap $q$-SDH assumption, and the other achieves computational anonymity and unforgeability under the DDH assumption.
In this paper, we provide rigorous definitions of security for SAACs, and show how to realize SAACs from the weaker notion of keyed-verification ACs (KVACs) and special types of oblivious issuance protocols for zero-knowledge proofs. We instantiate this paradigm to obtain two constructions: one achieves statistical anonymity with unforgeability under the Gap $q$-SDH assumption, and the other achieves computational anonymity and unforgeability under the DDH assumption.
Hyunjun Kim, Hwajeong Seo
The Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM) delivers both confidentiality and integrity yet poses performance and security challenges on resource-limited microcontrollers. In this paper, we present an optimized AES-GCM implementation for the ARM Cortex-M4 that combines Fixslicing AES with the FACE (Fast AES-CTR Encryption) strategy, significantly reducing redundant computations in AES-CTR. We further examine two GHASH implementations—a 4-bit Table-based approach and a Karatsuba-based constant-time variant—to balance speed, memory usage, and resistance to timing attacks. Our evaluations on an STM32F4 microcontroller show that Fixslicing+FACE reduces AES-128 GCTR cycle counts by up to 19.41\%, while the Table-based GHASH achieves nearly double the speed of its Karatsuba counterpart. These results confirm that, with the right mix of bitslicing optimizations, counter-mode caching, and lightweight polynomial multiplication, secure and efficient AES-GCM can be attained even on low-power embedded devices.
20 March 2025
VeriSSO: A Privacy-Preserving Legacy-Compatible Single Sign-On Protocol Using Verifiable Credentials
Ifteher Alom, Sudip Bhujel, Yang Xiao
Single Sign-On (SSO) is a popular authentication mechanism enabling users to access multiple web services with a single set of credentials. Despite its convenience, SSO faces outstanding privacy challenges. The Identity Provider (IdP) represents a single point of failure and can track users across different Relying Parties (RPs). Multiple colluding RPs may track users through common identity attributes. In response, anonymous credential-based SSO solutions have emerged to offer privacy-preserving authentication without revealing unnecessary user information. However, these solutions face two key challenges: supporting RP authentication without compromising user unlinkability and maintaining compatibility with the predominant Authorization Code Flow (ACF).
This paper introduces VeriSSO, a novel SSO protocol based on verifiable credentials (VC) that supports RP authentication while preserving privacy and avoiding single points of failure. VeriSSO employs an independent authentication server committee to manage RP and user authentication, binding RP authentication with credential-based anonymous user authentication. This approach ensures user unlinkability while supporting RP authentication and allows RPs to continue using their existing verification routines with identity tokens as in the ACF workflow. VeriSSO's design also supports lawful de-anonymization, ensuring user accountability for misbehavior during anonymity. Experimental evaluations of VeriSSO demonstrate its efficiency and practicality, with authentication processes completed within 100 milliseconds.
This paper introduces VeriSSO, a novel SSO protocol based on verifiable credentials (VC) that supports RP authentication while preserving privacy and avoiding single points of failure. VeriSSO employs an independent authentication server committee to manage RP and user authentication, binding RP authentication with credential-based anonymous user authentication. This approach ensures user unlinkability while supporting RP authentication and allows RPs to continue using their existing verification routines with identity tokens as in the ACF workflow. VeriSSO's design also supports lawful de-anonymization, ensuring user accountability for misbehavior during anonymity. Experimental evaluations of VeriSSO demonstrate its efficiency and practicality, with authentication processes completed within 100 milliseconds.
Jakub Kacper Szeląg, Ji-Jian Chin, Sook-Chin Yip
Federated Learning (FL) has recently emerged as one of the leading paradigms for collaborative machine learning, serving as a tool for model computation without a need to expose one’s privately stored data. However, despite its advantages, FL systems face severe challenges within its own security solutions that address both privacy and robustness of models. This paper focuses on vulnerabilities within the domain of FL security with emphasis on model-robustness. Identifying critical gaps in current defences, particularly against adaptive adversaries which modify their attack strategies after being disconnected and rejoin systems to continue attacks. To our knowledge, other surveys in this domain do not cover the concept of adaptive adversaries, this along with the significance of their impact serves as the main motivation for this work. Our contributions are fivefold: (1) we present a comprehensive overview of FL systems, presenting a complete summary of its fundamental building blocks, (2) an extensive overview of existing vulnerabilities that target FL systems in general, (3) highlight baseline attack vectors as well as state-of-the-art approaches to development of attack methods and defence mechanisms, (4) introduces a novel baseline method of attack leveraging reconnecting malicious clients, and (5) identifies future research directions to address and counter adaptive attacks. We demonstrate through experimental results that existing baseline secure aggregation rules used in other works for comparison such as Krum and Trimmed Mean are insufficient against those attacks. Further, works improving upon those algorithms do not address this concern either. Our findings serve as a basis for redefining FL security paradigms in the direction of adaptive adversaries.
Hoeteck Wee
We present almost-optimal lattice-based attribute-based encryption (ABE) and laconic function evaluation (LFE). For depth d circuits over $\ell$-bit inputs, we obtain
* key-policy (KP) and ciphertext-policy (CP) ABE schemes with ciphertext, secret key and public key size $O(1)$;
* LFE with ciphertext size $\ell + O(1)$ as well as CRS and digest size $O(1)$;
where O(·) hides poly(d, λ) factors. The parameter sizes are optimal, up to the poly(d) dependencies. The security of our schemes rely on succinct LWE (Wee, CRYPTO 2024). Our results constitute a substantial improvement over the state of the art; none of our results were known even under the stronger evasive LWE assumption.
* key-policy (KP) and ciphertext-policy (CP) ABE schemes with ciphertext, secret key and public key size $O(1)$;
* LFE with ciphertext size $\ell + O(1)$ as well as CRS and digest size $O(1)$;
where O(·) hides poly(d, λ) factors. The parameter sizes are optimal, up to the poly(d) dependencies. The security of our schemes rely on succinct LWE (Wee, CRYPTO 2024). Our results constitute a substantial improvement over the state of the art; none of our results were known even under the stronger evasive LWE assumption.
Vipul Goyal, Junru Li, Rafail Ostrovsky, Yifan Song
In this work, we study the communication complexity of constant-round secure multiparty computation (MPC) against a fully malicious adversary and consider both the honest majority setting and the dishonest majority setting. In the (strong) honest majority setting (where $t=(1/2-\epsilon)n$ for a constant $\epsilon$), the best-known result without relying on FHE is given by Beck et al. (CCS 2023) based on the LPN assumption that achieves $O(|C|\kappa)$ communication, where $\kappa$ is the security parameter and the achieved communication complexity is independent of the number of participants. In the dishonest majority setting, the best-known result is achieved by Goyal et al. (ASIACRYPT 2024), which requires $O(|C|n\kappa)$ bits of communication and is based on the DDH and LPN assumptions.
In this work, we achieve the following results: (1) For any constant $\epsilon<1$, we give the first constant-round MPC in the dishonest majority setting for corruption threshold $t<(1-\epsilon)n$ with $O(|C|\kappa+D (n+\kappa)^2\kappa)$ communication assuming random oracles and oblivious transfers, where $D$ is the circuit depth. (2) We give the first constant-round MPC in the standard honest majority setting (where $t=(n-1)/2$) with $O(|C|\kappa+D (n+\kappa)^2\kappa)$ communication only assuming random oracles.
Unlike most of the previous constructions of constant-round MPCs that are based on multiparty garbling, we achieve our result by letting each party garble his local computation in a non-constant-round MPC that meets certain requirements. We first design a constant-round MPC that achieves $O(|C|\kappa + Dn^2\kappa)$ communication assuming random oracles in the strong honest majority setting of $t=n/4$. Then, we combine the party virtualization technique and the idea of MPC-in-the-head to boost the corruption threshold to $t<(1-\epsilon)n$ for any constant $\epsilon<1$ assuming oblivious transfers to achieve our first result. Finally, our second result is obtained by instantiating oblivious transfers using a general honest-majority MPC and the OT extension technique built on random oracles.
In this work, we achieve the following results: (1) For any constant $\epsilon<1$, we give the first constant-round MPC in the dishonest majority setting for corruption threshold $t<(1-\epsilon)n$ with $O(|C|\kappa+D (n+\kappa)^2\kappa)$ communication assuming random oracles and oblivious transfers, where $D$ is the circuit depth. (2) We give the first constant-round MPC in the standard honest majority setting (where $t=(n-1)/2$) with $O(|C|\kappa+D (n+\kappa)^2\kappa)$ communication only assuming random oracles.
Unlike most of the previous constructions of constant-round MPCs that are based on multiparty garbling, we achieve our result by letting each party garble his local computation in a non-constant-round MPC that meets certain requirements. We first design a constant-round MPC that achieves $O(|C|\kappa + Dn^2\kappa)$ communication assuming random oracles in the strong honest majority setting of $t=n/4$. Then, we combine the party virtualization technique and the idea of MPC-in-the-head to boost the corruption threshold to $t<(1-\epsilon)n$ for any constant $\epsilon<1$ assuming oblivious transfers to achieve our first result. Finally, our second result is obtained by instantiating oblivious transfers using a general honest-majority MPC and the OT extension technique built on random oracles.
Meng Hao, Hanxiao Chen, Hongwei Li, Chenkai Weng, Yuan Zhang, Haomiao Yang, Tianwei Zhang
Zero-knowledge (ZK) proofs have been recently explored for the integrity of machine learning (ML) inference. However, these protocols suffer from high computational overhead, with the primary bottleneck stemming from the evaluation of non-linear functions. In this paper, we propose the first systematic ZK proof framework for non-linear mathematical functions in ML using the perspective of table lookup. The key challenge is that table lookup cannot be directly applied to non-linear functions in ML since it would suffer from inefficiencies due to the intolerably large table. Therefore, we carefully design several important building blocks, including digital decomposition, comparison, and truncation, such that they can effectively utilize table lookup with a quite small table size while ensuring the soundness of proofs. Based on these blocks, we implement complex mathematical operations and further construct ZK proofs for current mainstream non-linear functions in ML such as ReLU, sigmoid, and normalization. The extensive experimental evaluation shows that our framework achieves 50 ∼ 179× runtime improvement compared to the state-of-the-art work, while maintaining a similar level of communication efficiency.
19 March 2025
Shymaa M. Arafat
The Estonian i-voting experience is probably the richest to analyze; a country that is considered a pioneer in digitizing both the government and private sector since 2001, and hence digital voting in 2005, yet there are still some complaints submitted, critics and remarks to consider about the IVXV system. In this paper, we introduce a Systemization of Knowledge of the Estonian IVXV i-voting system and propose some added security enhancements. The presented SoK includes applications implemented by election observers in 2023 & 2024 elections, which, to our knowledge, has never been mentioned and/or analyzed in the academic literature before. The paper also updates the general knowledge about an extra right given to auditors
(but not observers) in the June 2024 European election, recent complaints, and about newer solutions suggested by academia in 2024. Finally, we discuss the current system status in 2024 EP elections and propose our own suggestions to some problems stated in the OSCE-ODIHR 2023 report that are still there.
Charanjit Singh Jutla, Arnab Roy
We describe a strategy for a nation to acquire majority stake in Bitcoin with zero cost to the taxpayers of the nation. We propose a bitcoin fork sponsored by the the government of the nation, and backed by the full faith of treasury of the nation, such that the genesis block of this fork attributes fixed large amount of new kinds of tokens called strategic-reserve-bitcoin tokens (SRBTC) to the nation's treasury, which is some multiple (greater than one) of the amount of all Bitcoin tokens (BTC) currently set in the Bitcoin protocol. The BTC tokens continue to be treated 1:1 as SRBTC tokens in the forked chain. The only capital that the nation puts up is its explicit guarantee that the SRBTC tokens of the fork will be accepted as legal tender, such as payment of tax to the treasury.
We suggest that this is a better approach than starting a new blockchain that mimics Bitcoin, as it will be partially fair to the current holders of Bitcoin, which in turn would make it competitive in the space of other such possible forks by other powerful nations. Moreover, such a proof-of-work blockchain retains its egalitarian and democratic nature, which competitively deters the said nation from any dilutions in the future.
To justify our proposal we setup three competitive games, and show strategies for different players that are in Nash equilibrium and which throw further light on these claims. In particular,
1. The first game shows that if the only two alternatives for investors is to invest in BTC or SRBTC, then individuals who have a certain fraction $\theta$ of their wealth already invested in BTC, will invest new money in the original chain, whereas the individuals whose current wealth invested in BTC is less than the $\theta$ fraction will invest new money in SRBTC. 2. The second game shows that if there is a third alternative for investment, which is cash that is losing value (inflation-adjusted) by a percentage $d$, then the investors who had less than $\theta$ fraction of wealth in Bitcoin, will invest in SRBTC only if the dilution of SRBTC is large enough (as an increasing (linear) function of $1/d$). Here by dilution we mean the new SRBTC tokens that are allowed to be eventually mined in the fork. 3. The third game shows that investors would prefer a fork of Bitcoin over a replica of Bitcoin that doesn't value original BTC, when both are available and even if both are backed similarly by one or more nations.
We suggest that this is a better approach than starting a new blockchain that mimics Bitcoin, as it will be partially fair to the current holders of Bitcoin, which in turn would make it competitive in the space of other such possible forks by other powerful nations. Moreover, such a proof-of-work blockchain retains its egalitarian and democratic nature, which competitively deters the said nation from any dilutions in the future.
To justify our proposal we setup three competitive games, and show strategies for different players that are in Nash equilibrium and which throw further light on these claims. In particular,
1. The first game shows that if the only two alternatives for investors is to invest in BTC or SRBTC, then individuals who have a certain fraction $\theta$ of their wealth already invested in BTC, will invest new money in the original chain, whereas the individuals whose current wealth invested in BTC is less than the $\theta$ fraction will invest new money in SRBTC. 2. The second game shows that if there is a third alternative for investment, which is cash that is losing value (inflation-adjusted) by a percentage $d$, then the investors who had less than $\theta$ fraction of wealth in Bitcoin, will invest in SRBTC only if the dilution of SRBTC is large enough (as an increasing (linear) function of $1/d$). Here by dilution we mean the new SRBTC tokens that are allowed to be eventually mined in the fork. 3. The third game shows that investors would prefer a fork of Bitcoin over a replica of Bitcoin that doesn't value original BTC, when both are available and even if both are backed similarly by one or more nations.
Alexandru-Valentin Basaga, Sorin Iftene
A secret sharing scheme starts with a secret and then derives from it
certain shares (or shadows) which are distributed to users.
The secret may be recovered only by certain
predetermined groups. In case of compartmented secret sharing, the
set of users is partitioned into compartments and the secret
can be recovered only if the number of participants from
any compartment is greater than or equal to a fixed compartment threshold
and the total number of participants is greater than or equal to a global threshold.
In this paper we use the Chinese Remainder Theorem for Polynomial Rings in order to construct an ideal compartmented secret sharing scheme, inspired by the work from [20].
In this paper we use the Chinese Remainder Theorem for Polynomial Rings in order to construct an ideal compartmented secret sharing scheme, inspired by the work from [20].
Nicolas David, Eric Garrido
This work introduce a new approach called Max bias analysis for the entropy computation of structures of Free Ring Oscillator-based Physical Random Number Generator. It employs the stochastic model based on the well-established Wiener process, specifically adapted to only capture thermal noise contributions while accounting for potential non-zero bias in the duty cycle.
Our analysis is versatile, applicable to combinations of multiple sampled Ring Oscillator (RO) filtering by any function. The entropy computation takes as inputs the parameters of the thermal stochastic model and delivers directly a proven bound for both Shannon entropy and min-entropy to fulfill AIS31 and NIST SP 800-90 B. As an example, we apply the new methodology on an enhanced structure of TRNG combining several free-running Ring Oscillators filtered by a vectorial function built from a linear error correcting code that optimizes the functional performance in terms of [entropy rate/silicium area used] and that maintains the mathematical proof of the entropy lower bound as simple as possible.
Jesko Dujmovic, Giulio Malavolta, Wei Qi
Registration-based encryption (RBE) is a recently developed alternative to identity-based encryption, that mitigates the well-known key-escrow problem by letting each user sample its own key pair. In RBE, the key authority is substituted by a key curator, a completely transparent entity whose only job is to reliably aggregate users' keys. However, one limitation of all known RBE scheme is that they all rely on one-time trusted setup, that must be computed honestly.
In this work, we ask whether this limitation is indeed inherent and we initiate the systematic study of RBE in the plain model, without any common reference string. We present the following main results:
- (Definitions) We show that the standard security definition of RBE is unachievable without a trusted setup and we propose a slight weakening, where one honest user is required to be registered in the system.
- (Constructions) We present constructions of RBE in the plain model, based on standard cryptographic assumptions. Along the way, we introduce the notions of non-interactive witness indistinguishable (NIWI) proofs secure against chosen statements attack and re-randomizable RBE, which may be of independent interest.
A major limitation of our constructions, is that users must be updated upon every new registration.
- (Lower Bounds) We show that this limitation is in some sense inherent. We prove that any RBE in the plain model that satisfies a certain structural requirement, which holds for all known RBE constructions, must update all but a vanishing fraction of the users, upon each new registration. This is in contrast with the standard RBE settings, where users receive a logarithmic amount of updates throughout the lifetime of the system.
Hong-Wei Sun
Due to their simple security assessments, permutation-based pseudo-random functions (PRFs) have become widely used in cryptography. It has been shown that PRFs using a single $n$-bit permutation achieve $n/2$ bits of security, while those using two permutation calls provide $2n/3$ bits of security in the classical setting. This paper studies the security of permutation-based PRFs within the Q1 model, where attackers are restricted to classical queries and offline quantum computations. We present improved quantum-time/classical-data tradeoffs compared with the previous attacks. Specifically, under the same assumptions/hardware as Grover's exhaustive search attack, i.e. the offline Simon algorithm, we can recover keys in quantum time $\tilde{O}(2^{n/3})$, with $O(2^{n/3})$ classical queries and $O(n^2)$ qubits. Furthermore, we enhance previous superposition attacks by reducing the data complexity from exponential to polynomial, while maintaining the same time complexity. This implies that permutation-based PRFs become vulnerable when adversaries have access to quantum computing resources. It is pointed out that the above quantum attack can be used to quite a few cryptography, including SoEM, PDMMAC, pEDM, as well as general instantiations like XopEM, EDMEM, EDMDEM, and others.
Virtual event, Anywhere on Earth, 18 September - 19 September 2025
Event date: 18 September to 19 September 2025
Submission deadline: 15 May 2025
Notification: 8 July 2025
Submission deadline: 15 May 2025
Notification: 8 July 2025
27 October - 31 October 2025
Event date: 27 October to 31 October 2025
Submission deadline: 30 June 2025
Notification: 15 August 2025
Submission deadline: 30 June 2025
Notification: 15 August 2025