IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
02 November 2024
University of Birmingham, UK
At the Centre for Cyber Security and Privacy at the University of Birmingham, we are looking for a PhD student in low-level security topics, for example confidential computing, embedded & firmware security, GPU security, side channels, and/or mobile network security.
Studentship: The studentship covers a stipend and tuition fees based on home student rates. The stipend provides an annual maintenance allowance of £19,237. The allowance is paid as a (usually) tax-free stipend and its rate is usually incremented on 1 October each following year.
We provide personal laptops and travel funding to attend conferences (subject to prior approval) and one summer school (or equivalent). Students will also be given the chance to participate in teaching activities, including creating and grading exercises as well as conducting laboratory and tutorial sessions, which are compensated separately.
Eligibility: Candidates from most countries are welcome to apply. Candidates should have a good background in system-level programming (e.g. using C, C++, Assembly, and/or Rust) and/or embedded systems/hardware. We also expect a first-class UG or PG degree in a relevant subject (e.g. computer science or electrical engineering).
Apply: Applications are accepted until 5 Dec 2024, see https://www.birmingham.ac.uk/schools/computer-science/postgraduate-research/applying-for-phd-in-computer-science.
Closing date for applications:
Contact: Feel free to informally discuss with David Oswald (d.f.oswald (at) bham.ac.uk) and Marius Münch (m.muench (at) bham.ac.uk) before putting in a full application.
More information: https://www.birmingham.ac.uk/schools/computer-science/postgraduate-research/applying-for-phd-in-computer-science
Computer Science Department, University of Oxford
Closing date for applications:
Contact: Jo Francis, Computer Science Department, Oxford Univeristy.
More information: https://www.cs.ox.ac.uk/aboutus/vacancies/vacancy-faculty-hiring.html
01 November 2024
Valerio Cini, Hoeteck Wee
Ahmad Khoureich Ka
Yuyin Yu, Jingchen Li, Nadiia Ichanska, Nikolay Kaleyski
Quinten Norga, Suparna Kundu, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, Ingrid Verbauwhede
Ryo Ohashi, Hiroshi Onuki
Seungwoo Kim, Semin Han, Seongho Park, Kyeongtae Lee, Jihye Kim, Hyunok Oh
Our evaluation demonstrates that zkMarket significantly reduces the computational overhead associated with traditional blockchain solutions while maintaining robust security and privacy. The seller can register 1MB of data in 3.2 seconds, while the buyer can generate the trade transaction in 0.2 seconds, and the seller can finalize the trade in 0.4 seconds.
Jingyu Li, Zhicong Huang, Min Zhang, Jian Liu, Cheng Hong, Tao Wei, Wenguang Chen
Michele Ciampi, Xiangyu Liu, Ioannis Tzannetos, Vassilis Zikas
In this work, we present an alternative approach to construct universal adaptor signature schemes relying on the multi-party computation in the head (MPCitH) paradigm. This overcomes the reliance on the costly Karp reduction, while inheriting the core property of the MPCitH---which makes it an invaluable tool in efficient cryptographic protocols---namely, that the construction is black-box with respect to the underlying cryptographic primitive (while it remains non-black-box in the relation being proven). Our framework simplifies the design of UAS and enhances their applicability across a wide range of decentralized applications, such as blockchain and privacy-preserving systems. Our results demonstrate that MPCitH-based UAS schemes offer strong security guarantees while making them a promising tool in the design of real-world cryptographic protocols.
Sunyeop Kim, Insung Kim, Dongjae Lee, Deukjo Hong, Jaechul Sung, Seokhie Hong
30 October 2024
Laasya Bangalore, Albert Cheu, Muthuramakrishnan Venkitasubramaniam
Daniel Cabarcas, Peigen Li, Javier Verbel, Ricardo Villanueva-Polanco
In this work, we propose a polynomial solving algorithm tailored for SNOVA systems, which exploits the stability of the system under the action of a commutative group of matrices. This new algorithm reduces the complexity to solve SNOVA systems, over generic ones. We show how to adapt the reconciliation and direct attacks in order to profit from the new algorithm. Consequently, we improve the reconciliation attack for all SNOVA parameter sets with speedup factors ranging between $2^3$ and $2^{22}$. Our algorithm also reduces the complexity of the direct attack for several parameter sets. It is particularly effective for the parameters that give the best performance to SNOVA $(l=4)$, and which were not taken below NIST's security threshold by previous attacks. Our attack brings these parameter sets $(l=4)$ below that threshold with speedup factors between $2^{33}$ and $2^{52}$, over the state-of-the-art.
Phillip Gajland, Jonas Janneck, Eike Kiltz
Its security hinges on a Rényi divergence-based argument for Gaussian samplers, a core element of the scheme. However, the GPV proof, which uses statistical distance to argue closeness of distributions, fails when applied naively to Falcon due to parameter choices resulting in statistical distances as large as $2^{-34}$. Additional implementation-driven deviations from the GPV framework further invalidate the original proof, leaving Falcon without a security proof despite its selection for standardisation.
This work takes a closer look at Falcon and demonstrates that introducing a few minor, conservative modifications allows for the first formal proof of the scheme in the random oracle model. At the heart of our analysis lies an adaptation of the GPV framework to work with the Rényi divergence, along with an optimised method for parameter selection under this measure. Furthermore, we obtain a provable version of the GPV framework over NTRU rings. Both these tools may be of independent interest.
Unfortunately, our analysis shows that despite our modification of Falcon-512 and Falcon-1024 we do not achieve strong unforgeability for either scheme. For plain unforgeability we are able to show that our modifications to Falcon-512 barely satisfy the claimed 120-bit security target and for Falcon-1024 we confirm the claimed security level. As such we recommend revisiting falcon and its parameters.
Hanzhi Liu, Jingyu Ke, Hongbo Wen, Robin Linus, Lukas George, Manish Bista, Hakan Karakuş, Domo, Junrui Liu, Yanju Chen, Yu Feng
To address these challenges, we introduce the first formal verification tool for BitVM implementations. Our approach involves designing a register-based, higher-level domain-specific language (DSL) that abstracts away complex stack operations, allowing developers to reason about program correctness more effectively while preserving the semantics of the original Bitcoin Script. We present a formal computational model capturing the semantics of BitVM execution and Bitcoin Script, providing a foundation for rigorous verification. To efficiently handle large programs and complex constraints arising from unrolled computations that simulate loops, we summarize repetitive "loop-style" computations using loop invariant predicates in our DSL. We leverage a counterexample-guided inductive synthesis (CEGIS) procedure to lift low-level Bitcoin Script into our DSL, facilitating efficient verification without sacrificing accuracy. Evaluated on 98 benchmarks from BitVM's SNARK verifier, our tool successfully verifies 94% of cases within seconds, demonstrating its effectiveness in enhancing the security and reliability of BitVM.
Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Jaehan Cho, Howon Kim
Masayuki Abe, David Balbás, Dung Bui, Miyako Ohkubo, Zehua Shang, Mehdi Tibouchi
We demonstrate the usefulness of these notions with two fundamental applications where three-round protocols are known to be useful, but multi-round ones generally fail. First, we show that critical-round proofs yield trapdoor commitment schemes. This result also enables the instantiation of post-quantum secure adaptor signatures and threshold ring signatures from MPCitH, resolving open questions in (Haque and Scafuro, PKC 2020) and in (Liu et al., ASIACRYPT 2024). Second, we show that critical-round proofs can be securely composed using the Cramer-Schoenmakers-Damgård method. This solves an open question posed by Abe et al. in CRYPTO 2024.
Overall, these results shed new light on the potential of multi-round proofs in both theoretical and practical cryptographic protocol design