International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

14 June 2020

Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, Sara Tucci-Piergiovanni
ePrint Report ePrint Report
We study the rational behaviors of participants in committee-based blockchains. Committee-based blockchains rely on specific blockchain consensus that must be guaranteed in presence of rational participants. We consider a simplified blockchain consensus algorithm based on existing or proposed committee-based blockchains that encapsulates the main actions of the participants: voting for a block, and checking its validity. Knowing that those actions have costs, and achieving the consensus gives rewards to committee members, we study using game theory how strategic players behave while trying to maximizing their gains. We consider different reward schemes, and found that in each setting, there exist equilibria where blockchain consensus is guaranteed; in some settings however, there can be coordination failures hindering consensus. Moreover, we study equilibria with trembling participants, which is a novelty in the context of committee-based blockchains. Trembling participants are rational that can do unintended actions with a low probability. We found that in presence of trembling participants, there exist equilibria where blockchain consensus is guaranteed; however, when only voters are rewarded, there also exist equilibria where validity can be violated.
Expand
Elizabeth C. Crites, Mary Maller, Sarah Meiklejohn, Rebekah Mercer
ePrint Report ePrint Report
Token-curated registries (TCRs) are a mechanism by which a set of users are able to jointly curate a reputable list about real-world information. Entries in the registry may have any form, so this primitive has been proposed for use -- and deployed -- in a variety of decentralized applications, ranging from the simple joint creation of lists to helping to prevent the spread of misinformation online. Despite this interest, the security of this primitive is not well understood, and indeed existing constructions do not achieve strong or provable notions of security or privacy. In this paper, we provide a formal cryptographic treatment of TCRs as well as a construction that provably hides the votes cast by individual curators. Along the way, we provide a model and proof of security for an underlying voting scheme, which may be of independent interest.
Expand
Ben Nassi, Yaron Pirutin, Adi Shamir, Yuval Elovici, Boris Zadov
ePrint Report ePrint Report
Recent studies have suggested various side-channel attacks for eavesdropping sound by analyzing the side effects of sound waves on nearby objects (e.g., a bag of chips and window) and devices (e.g., motion sensors). These methods pose a great threat to privacy, however they are limited in one of the following ways: they (1) cannot be applied in real time (e.g., Visual Microphone), (2) are not external, requiring the attacker to compromise a device with malware (e.g., Gyrophone), or (3) are not passive, requiring the attacker to direct a laser beam at an object (e.g., laser microphone). In this paper, we introduce "Lamphone," a novel side-channel attack for eavesdropping sound; this attack is performed by using a remote electro-optical sensor to analyze a hanging light bulb’s frequency response to sound. We show how fluctuations in the air pressure on the surface of the hanging bulb (in response to sound), which cause the bulb to vibrate very slightly (a millidegree vibration), can be exploited by eavesdroppers to recover speech and singing, passively, externally, and in real time. We analyze a hanging bulb’s response to sound via an electro-optical sensor and learn how to isolate the audio signal from the optical signal. Based on our analysis, we develop an algorithm to recover sound from the optical measurements obtained from the vibrations of a light bulb and captured by the electro-optical sensor. We evaluate Lamphone’s performance in a realistic setup and show that Lamphone can be used by eavesdroppers to recover human speech (which can be accurately identified by the Google Cloud Speech API) and singing (which can be accurately identified by Shazam and SoundHound) from a bridge located 25 meters away from the target room containing the hanging light bulb.
Expand
Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien Stehlé, Weiqiang Wen
ePrint Report ePrint Report
We give a lattice reduction algorithm that achieves root Hermite factor $k^{1/(2k)}$ in time $k^{k/8 + o(k)}$ and polynomial memory. This improves on the previously best known enumeration-based algorithms which achieve the same quality, but in time $k^{k/(2e) + o(k)}$. A cost of $k^{k/8 + o(k)}$ was previously mentioned as potentially achievable (Hanrot-Stehlé'10) or as a heuristic lower bound (Nguyen'10) for enumeration algorithms. We prove the complexity and quality of our algorithm under a heuristic assumption and provide empirical evidence from simulation and implementation experiments attesting to its performance for practical and cryptographic parameter sizes. Our work also suggests potential avenues for achieving costs below $k^{k/8 + o(k)}$ for the same root Hermite factor, based on the geometry of SDBKZ-reduced bases.
Expand
Eleonora Testa, Mathias Soeken, Heinz Riener, Luca Amaru, Giovanni De Micheli
ePrint Report ePrint Report
Logic synthesis is a fundamental step in the realization of modern integrated circuits. It has traditionally been employed for the optimization of CMOS-based designs, as well as for emerging technologies and quantum computing. Recently, it found application in minimizing the number of AND gates in cryptography benchmarks represented as xor-and graphs (XAGs). The number of AND gates in an XAG, which is called the logic network’s multiplicative complexity, plays a critical role in various cryptography and security protocols such as fully homomorphic encryption (FHE) and secure multi-party computation (MPC). Further, the number of AND gates is also important to assess the degree of vulnerability of a Boolean function, and influences the cost of techniques to protect against side-channel attacks. However, so far a complete logic synthesis flow for reducing the multiplicative complexity in logic networks did not exist or relied heavily on manual manipulations. In this paper, we present a logic synthesis toolbox for cryptography and security applications. The proposed tool consists of powerful transformations, namely resubstitution, refactoring, and rewriting, specifically designed to minimize the multiplicative complexity of an XAG. Our flow is fully automatic and achieves significant results over both EPFL benchmarks and cryptography circuits. We improve the best-known results for cryptography up to 59%, resulting in a normalized geometric mean of 0.82.
Expand
Ingo Czerwinski
ePrint Report ePrint Report
We give a lower bound for the size of the value set of almost perfect nonlinear (APN) functions \(F\colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}\). For \(n\) even it is \(\frac{ 2^n + 2 }{3}\) and sharp as the simple example \(F(x) = x^3\) shows. The sharp lower bound for \(n\) odd has to lie between \(\frac{ 2^n + 1 }{3}\) and \(2^{n-1}\). Sharp bounds for the cases \(n = 3\) and \(n = 5\) are explicitly given.
Expand

11 June 2020

James Bell, K. A. Bonawitz, Adrià Gascón, Tancrède Lepoint, Mariana Raykova
ePrint Report ePrint Report
Secure aggregation is a cryptographic primitive that enables a server to learn the sum of the vector inputs of many clients. Bonawitz et al. (CCS 2017) presented a construction that incurs computation and communication for each client linear in the number of parties. While this functionality enables a broad range of privacy preserving computational tasks, scaling concerns limit its scope of use.

We present the first constructions for secure aggregation that achieve polylogarithmic communication and computation per client. Our constructions provide security in the semi-honest and the semi-malicious setting where the adversary controls the server and a $\gamma$-fraction of the clients, and correctness with up to $\delta$-fraction dropouts among the clients. Our constructions show how to replace the complete communication graph of Bonawitz et al., which entails the linear overheads, with a $k$-regular graph of logarithmic degree while maintaining the security guarantees.

Beyond improving the known asymptotics for secure aggregation, our constructions also achieve very efficient concrete parameters. The semi-honest secure aggregation can handle a billion clients at the per client cost of the protocol of Bonawitz et al. for a thousand clients. In the semi-malicious setting with $10^4$ clients, each client needs to communicate only with $3\%$ of the clients to have a guarantee that its input has been added together with the inputs of at least $5000$ other clients, while withstanding up to $5\%$ corrupt clients and $5\%$ dropouts. We also show an application of secure aggregation to the task of secure shuffling which enables the first cryptographically secure instantiation of the shuffle model of differential privacy.
Expand
Shuhei Nakamura, Yasuhiko Ikematsu, Yacheng Wang, Jintai Ding, Tsuyoshi Takagi
ePrint Report ePrint Report
Multivariate public key cryptography is a candidate for post-quantum cryptography, and it allows generating particularly short signatures and fast verification. The Rainbow signature scheme proposed by J. Ding and D. Schmidt is such a multivariate cryptosystem and is considered secure against all known attacks. The Rainbow-Band-Separation attack recovers a secret key of Rainbow by solving certain systems of quadratic equations, and its complexity is estimated by the well-known indicator called the degree of regularity. However, the degree of regularity generally is larger than the solving degree in experiments, and an accurate estimation cannot be obtained. In this paper, we propose a new indicator for the complexity of the Rainbow-Band-Separation attack using the $F_4$ algorithm, which gives a more precise estimation compared to one using the degree of regularity. This indicator is deduced by the two-variable power series $$\frac{\prod _{i=1}^m(1-t_1^{d_{i1}}t_2^{d_{i2}})}{(1-t_1)^{n_1}(1-t_2)^{n_2}},$$ which coincides with the one-variable power series at $t_1=t_2$ deriving the degree of regularity. Moreover, we show a relation between the Rainbow-Band-Separation attack using the hybrid approach and the HighRank attack. By considering this relation and our indicator, we obtain a new complexity estimation for the Rainbow-Band-Separation attack. Consequently, we are able to understand the precise security of Rainbow against the Rainbow-Band-Separation attack using the $F_4$ algorithm.
Expand
Ray Perlner, Daniel Smith-Tone
ePrint Report ePrint Report
Currently the National Institute of Standards and Technology (NIST) is engaged in a post-quantum standardization effort, analyzing numerous candidate schemes to provide security against the advancing threat of quantum computers. Among the candidates in the second round of the standardization process is Rainbow, a roughly 15 year old digital signature scheme based on multivariate systems of equations. While there are many attack avenues for Rainbow, the parameters have to date seemed balanced in such a way to make every attack sufficiently costly that it meets the security levels specified by NIST in their standardization effort. One type of attack against Rainbow has historically outperformed empirically its theoretical complexity: the Rainbow Band Separation (RBS) attack. We explain this discrepancy by providing a tighter theoretical analysis of the attack complexity. While previous analyses assumed that the system of equations derived in the attack are generic, our analysis uses the fact that they are structured to justify tighter bounds on the complexity. As a result, we can prove under the same set of assumptions used to justify the analysis in the Rainbow submission specification that none of the parameters of Rainbow achieve their claimed security level. Specifically, the level I, III and V parameter sets fall short of their claimed security levels by at least 3, 6 and 10 bits, respectively. We then apply our analysis to suggest the small parameter changes necessary to guarantee that Rainbow can meet the NIST security levels.
Expand

10 June 2020

Bar Alon, Eran Omri, Anat Paskin-Cherniavsky
ePrint Report ePrint Report
Classical definitions for secure multiparty computation assume the existence of a single adversarial entity controlling the set of corrupted parties. Intuitively, the definition requires that the view of the adversary, corrupting $t$ parties, in a real-world execution can be simulated by an adversary in an ideal model, where parties interact only via a trusted-party. No restrictions, however, are imposed on the view of honest parties in the protocol, thus, if honest parties obtain information about the private inputs of other honest parties -- it is not counted as a violation of privacy. This is arguably undesirable in many situations that fall into the MPC framework. Nevertheless, there are secure protocols (e.g., the 2-round multiparty protocol of Ishai et al.~[CRYPTO 2010] tolerating a single corrupted party) that instruct the honest parties to reveal their private inputs to all other honest parties (once the malicious party is somehow identified).

In this paper, we put forth a new security notion, which we call \textit{FaF-security}, extending the classical notion. In essence, $(t,h^*)$-FaF-security requires the view of a subset of up to $h^*$ honest parties to also be simulatable in the ideal model (in addition to the view of the malicious adversary, corrupting up to $t$ parties). This property should still hold, even if the adversary leaks information to honest parties by sending them non-prescribed messages. We provide a thorough exploration of the new notion, investigating it in relation to a variety of existing security notions. We further investigate the feasibility of achieving FaF-security and show that every functionality can be computed with (computational) $(t,h^*)$-FaF full-security, if and only if $2t+ h^*<m$. Interestingly, the lower-bound result actually shows that even fair FaF-security is impossible in general when $2t+ h^*\ge m$ (surprisingly, the view of the malicious attacker is not used as the trigger for the attack).

We also investigate the optimal round complexity for $(t,h^*)$-FaF-secure protocols and give evidence that the leakage of private inputs of honest parties in the protocol of Ishai et al.~[CRYPTO 2010] is inherent. Finally, we investigate the feasibility of statistical/perfect FaF-security, employing the viewpoint used by Fitzi et al.~[ASIACRYPT 1999] for \textit{mixed-adversaries}.
Expand
Vladimir Belsky, Ilia Gerasimov, Kirill Tsaregorodtsev, Ivan Chizhov
ePrint Report ePrint Report
Personal data exchange and disclosure prevention are widespread problems in our digital world. There are a couple of information technologies embedded in the commercial and government processes. People need to exchange their personal information while using these technologies. And therefore, It is essential to make this exchange is secure. Despite many legal regulations, there are many cases of personal data breaches that lead to undesirable consequences. Reasons for personal data leakage may be adversary attack or data administration error. At the same time, creating complex service interaction and multilayer information security may lead to many inconveniences for the user. Personal data exchange protocol has the following tasks: participant’s data transfer, ensuring information security, providing participants with trust in each other and ensuring service availability. In this paper, we represent a personal data exchange protocol called X. The main idea is to provide personal data encryption on the user side and thus to prevent personal data disclosure and publication. This approach allows us to transfer personal data from user to service only in the form of an encrypted data packet - blob. Each blob can be validated and certified by a personal data inspector who had approved user’s information. It can be any government department or a commercial organization, for example, passport issuing authority, banks, etc. It implies that we can provide several key features for personal data exchange. A requesting service cannot publish the user personal data. It still can perform a validation protocol with an inspector to validate user data. We do not depend on service data administration infrastructure and do not complicate the inspector’s processes by adding additional information about the personal data request. The personal data package has a link between the personal data owner and a service request. Each blob is generated for a single request and has a time limit for a provided encrypted personal data. After this limit, the service can not use a received package. The user cannot provide invalid personal data or use the personal data of another person. We don’t restrict specified cryptographic algorithms usage The X protocol can be implemented with any encryption, digital signature, key generation algorithms which are secure in our adversary model. For protocol description, Russian standardized cryptographic protocols are used. The paper also contains several useful examples of how the X protocol can be implemented in real information systems.
Expand
Lauren De Meyer
ePrint Report ePrint Report
Cryptographic primitives have been designed to be secure against mathematical attacks in a black-box model. Such primitives can be implemented in a way that they are also secure against physical attacks, in a grey-box model. One of the most popular techniques for this purpose is masking. The increased security always comes with a high price tag in terms of implementation cost. In this work, we look at how the traditional design principles of symmetric primitives can be at odds with the optimization of the implementations and how they can evolve to be more suitable for embedded systems. In particular, we take a comparative look at the round 2 candidates of the NIST lightweight competition and their implementation properties in the world of masking.
Expand
Zhe CEN, Xiutao FENG, Zhangyi Wang, Chunping CAO
ePrint Report ePrint Report
GIFT-COFB is one of the round 2 candidate algorithms of NIST lightweight cryptography. In this paper we present a forgery attack on GIFT-COFB. In our attack, the block cipher GIFT is viewed as a block box, and for an arbitrary ciphertext $(C, T)$ with at least twice the block length of GIFT-COFB, if an attacker knows arbitrary two successive blocks of message $M$ corresponding to $C$, he/she can forge infinite new valid ciphertexts $(C', T')$ such that for each $(C', T')$, there exists a plaintext $M'$ satisfying $(C', T')$=GIFT-COFB($M'$). The above result shows that GIFT-COFB can not resist against the forgery attack.
Expand
F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé, P. Zimmermann
ePrint Report ePrint Report
We report on two new records: the factorization of RSA-240, a 795-bit number, and a discrete logarithm computation over a 795-bit prime field. Previous records were the factorization of RSA-768 in 2009 and a 768-bit discrete logarithm computation in 2016. Our two computations at the 795-bit level were done using the same hardware and software, and show that computing a discrete logarithm is not much harder than a factorization of the same size. Moreover, thanks to algorithmic variants and well-chosen parameters, our computations were significantly less expensive than anticipated based on previous records.

The last page of this paper also reports on the factorization of RSA-250.
Expand
Yin Li, Yu Zhang
ePrint Report ePrint Report
The Chinese remainder theorem (CRT)-based multiplier is a new type of hybrid bit-parallel multiplier, which can achieve nearly the same time complexity compared with the fastest multiplier known to date with reduced space complexity. However, the current CRT-based multipliers are only applicable to trinomials. In this paper, we propose an efficient CRT-based bit-parallel multiplier for a special type of pentanomial $x^m+x^{m-k}+x^{m-2k}+x^{m-3k}+1, 5k<m\leq 7k$. Through transforming the non-constant part $x^m+x^{m-k}+x^{m-2k}+x^{m-3k}$ into a binomial, we can obtain relatively simpler quotient and remainder computations, which lead to faster implementation with reduced space complexity compared with classic quadratic multipliers. Moreover, for some $m$, our proposal can achieve the same time delay as the fastest multipliers for irreducible Type II and Type C.1 pentanomials of the same degree, but the space complexities are reduced.
Expand
Rupeng Yang, Man Ho Au, Zuoxia Yu, Qiuliang Xu
ePrint Report ePrint Report
A software watermarking scheme can embed a message into a program without significantly changing its functionality. Moreover, any attempt to remove the embedded message in a marked program will substantially change the functionality of the program. Prior constructions of watermarking schemes focus on watermarking cryptographic functions, such as pseudorandom function (PRF), public key encryption, etc.

A natural security requirement for watermarking schemes is collusion resistance, where the adversary’s goal is to remove the embedded messages given multiple marked versions of the same program. Currently, this strong security guarantee has been achieved by watermarking schemes for public key cryptographic primitives from standard assumptions (Goyal et al., CRYPTO 2019) and by watermarking schemes for PRFs from indistinguishability obfuscation (Yang et al., ASIACRYPT 2019). However, no collusion resistant watermarking scheme for PRF from standard assumption is known.

In this work, we solve this problem by presenting a generic construction that upgrades a watermarkable PRF without collusion resistance to a collusion resistant one. One appealing feature of our construction is that it can preserve the security properties of the original scheme. For example, if the original scheme has security with extraction queries, the new scheme is also secure with extraction queries. Besides, the new scheme can achieve unforgeability even if the original scheme does not provide this security property. Instantiating our construction with existing watermarking schemes for PRF, we obtain collusion resistant watermarkable PRFs from standard assumptions, offering various security properties.
Expand
Indian Institute of Technology Delhi (Workplace: IIT Bhilai, Raipur)
Job Posting Job Posting
Project: Building end to end 5G Test Bed
Work Sub-area:
  • Lightweight Cryptography including authentication protocols
  • Secure boot mechanisms for edge devices
    Funding Agency: Ministry of Communication and Information Technology (MCIT)
    Tentative Duration: Upto:31/03/2021


    Qualifications:

  • B. Tech. (with GATE qualification) / M.Sc. (with NET/SET qualification) / M.C.A. (with GATE* qualification) 1st class or equivalent in the appropriate discipline.


    Desirables:

    Basic knowledge of cryptography or some experience with using RFID tags or experience on some Raspberry based project or using Trusted Platform Modules (TPMs)

    Note: *The requirement of qualifying NET/SET/GATE qualification may be relaxed by the Committee in case of highly meritorious candidates.

    Closing date for applications:

    Contact:
    Dr. Dhiman Saha,
    Department of Electrical Engineering and Computer Science,
    Indian Institute of Technology Bhilai.
    email: dhiman [at] iitbhilai [dot] ac [in]

    For more info about the research group and other opportunities visit group site: http://de.ci.phe.red

    More information: http://ird.iitd.ac.in/sites/default/files/jobs/project/IITD-IRD-085-2020..pdf

  • Expand
    Surrey, United Kingdom, 17 September - 18 September 2020
    Event Calendar Event Calendar
    Event date: 17 September to 18 September 2020
    Submission deadline: 10 July 2020
    Notification: 20 August 2020
    Expand
    Thomas Espitau, Paul Kirchner
    ePrint Report ePrint Report
    In this work, we exhibit a hierarchy of polynomial time algorithms solving approximate variants of the Closest Vector Problem (CVP). Our first contribution is a heuristic algorithm achieving the same distance tradeoff as HSVP algorithms, namely $\approx \beta^{\frac{n}{2\beta}}\textrm{covol}(\Lambda)^{\frac{1}{n}}$ for a random lattice $\Lambda$ of rank $n$. Compared to the so-called Kannan's embedding technique, our algorithm allows using precomputations and can be used for efficient batch CVP~instances. This implies that some attacks on lattice-based signatures lead to very cheap forgeries, after a precomputation. Our second contribution is a \emph{proven} reduction from approximating the closest vector with a factor $\approx n^{\frac32}\beta^{\frac{3n}{2\beta}}$ to the Shortest Vector Problem (SVP) in dimension $\beta$.
    Expand
    Kai-Min Chung, Siyao Guo, Qipeng Liu, Luowen Qian
    ePrint Report ePrint Report
    In function inversion, we are given a function $f: [N] \mapsto [N]$, and want to prepare some advice of size $S$, such that we can efficiently invert any image in time $T$. This is a well studied problem with profound connections to cryptography, data structures, communication complexity, and circuit lower bounds. Investigation of this problem in the quantum setting was initiated by Nayebi, Aaronson, Belovs, and Trevisan (2015), who proved a lower bound of $ST^2 = \tilde\Omega(N)$ for random permutations against classical advice, leaving open an intriguing possibility that Grover's search can be sped up to time $\tilde O(\sqrt{N/S})$. Recent works by Hhan, Xagawa, and Yamakawa (2019), and Chung, Liao, and Qian (2019) extended the argument for random functions and quantum advice, but the lower bound remains $ST^2 = \tilde\Omega(N)$.

    In this work, we prove that even with quantum advice, $ST + T^2 = \tilde\Omega(N)$ is required for an algorithm to invert random functions. This demonstrates that Grover's search is optimal for $S = \tilde O(\sqrt{N})$, ruling out any substantial speed-up for Grover's search even with quantum advice. Further improvements to our bounds would imply a breakthrough in circuit lower bounds, as shown by Corrigan-Gibbs and Kogan (2019).

    To prove this result, we develop a general framework for establishing quantum time-space lower bounds. We further demonstrate the power of our framework by proving the following results.

    * Yao's box problem: We prove a tight quantum time-space lower bound for classical advice. For quantum advice, we prove a first time-space lower bound using shadow tomography. These results resolve two open problems posted by Nayebi, Aaronson, Belovs, and Trevisan (2015).

    * Salted cryptography: We show that “salting generically provably defeats preprocessing,” a result shown by Coretti, Dodis, Guo, and Steinberger (2018), also holds in the quantum setting. In particular, we prove quantum time-space lower bounds for a wide class of salted cryptographic primitives in the quantum random oracle model. This yields a first quantum time-space lower bound for salted collision-finding, which in turn implies that $\mathsf{PWPP}^{\mathcal O} \not\subseteq \mathsf{FBQP}^{\mathcal O}\mathsf{/qpoly}$ relative to a random oracle $\mathcal O$.
    Expand