IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
28 July 2025
Onur Gunlu
This work provides lower bounds on Wyner's common information (WCI), which is the communication cost when common randomness is absent, and proposes numerical techniques to evaluate the other corner point of the RDFC rate region for continuous‑alphabet random variables with unlimited shared randomness. Experiments illustrate that a sufficient amount of common randomness can reduce the semantic communication rate by up to two orders of magnitude compared to the WCI point, while RDFC without any shared randomness still outperforms lossless transmission by a large margin. A finite blocklength analysis further confirms that the privacy parameter gap between the asymptotic and non-asymptotic RDFC methods closes exponentially fast with input length. Our results position RDFC as an energy-efficient semantic communication strategy for privacy‑aware distributed computation systems.
MOHAMMAD VAZIRI, Vesselin Velichkov
We construct our initial state configurations based on the automated method proposed by Bi et al. in Design, Codes and Cryptography (2019), and compare our results with theirs. For the 4-round Ketje Minor, we reduce the time complexity from \(2^{20}\) to \(2^{16.8}\); for the 5-round Ketje Major, from \(2^{24.3}\) to \(2^{23.9}\); for 5 round Keccak-MAC-512, from \(2^{34}\) to \(2^{31.3}\); and for 5 round Keccak-MAC-384, from \(2^{27.6}\) to \(2^{25.5}\).
Foteini Baldimtsi, Konstantinos Chalkias, Arnab Roy
In this work, we observe that blockchains employing EdDSA with RFC 8032-compliant key derivation (e.g., Sui, Solana, Near, Stellar, Aptos, Cosmos) possess an underexplored structural advantage. Specifically, EdDSA’s hash-based deterministic secret key generation enables post-quantum zero-knowledge proofs of elliptic curve private key ownership, which can help switching to a quantum-safe algorithm proactively without requiring transfer of assets to new addresses.
We demonstrate how Post-Quantum NIZKs can be constructed to prove knowledge of the "seed" used in EdDSA key derivation, enabling post-quantum-secure transaction authorization without altering addresses or disclosing elliptic curve data. By post-quantum readiness, we mean that with a single user action all future signatures can be made post-quantum secure, even if past transactions used classical elliptic curve cryptography. This allows even users who have previously exposed their public key to seamlessly enter the post-quantum era without transferring assets or changing their account address.
As part of this analysis, we also show that BIP32-based ECDSA wallets are not post-quantum ready without breaking changes, as they rely on direct scalar exposure in derivation, making backward-compatible upgrades infeasible. In contrast, SLIP-0010 hash-chain based EdDSA private key derivation provides a foundation for seamless, backwards-compatible migration to quantum-safe wallets, supporting secure upgrades even for dormant or legacy accounts.
This mechanism affords a quantum-resilient path and is the first of its kind that preserves full backward compatibility, supports account abstraction, and critically secures dormant accounts, whether from users or custodians, that would otherwise be compromised under quantum adversaries.
Hannah Mahon, Shane Kosieradzki
Zachary DeStefano, Jeff J. Ma, Joseph Bonneau, Michael Walfish
The use of DNSSEC dramatically reduces reliance on CAs, and the small size of the proofs enables compatibility with legacy infrastructure, including TLS servers, certificate formats, and certificate transparency. NOPE proofs add minimal performance overhead to clients, increasing the size of a typical certificate chain by about 10% and requiring just over 1 ms to verify. NOPE’s core technical contributions (which generalize beyond NOPE) include efficient techniques for representing parsing and cryptographic operations within succinct proofs, which reduce proof generation time and memory requirements by nearly an order of magnitude.
Wenxuan Zeng, Tianshi Xu, Yi Chen, Yifan Zhou, Mingzhe Zhang, Jin Tan, Cheng Hong, Meng Li
26 July 2025
NIT Rourkela, India, 5 December - 7 December 2025
Submission deadline: 20 August 2025
Notification: 25 September 2025
Changzhou, China, 14 November - 16 November 2025
Submission deadline: 30 July 2025
Notification: 20 September 2025
Changzhou, China, 12 December - 13 December 2025
Submission deadline: 30 August 2025
Notification: 30 October 2025
Logiicdev Gmbh, Graz, Austria
Closing date for applications:
Contact: MSc Deepak V Katkoria
More information: https://www.logiicdev.eu
Aalto University, Finland
We (Chris Brzuska and Russell Lai) are looking for postdocs interested in working with us on topics including but not limited to:
- Lattice-based cryptography, with special focus on the design, application, and analysis of structured/hinted lattice assumptions
- Succinct/zero-knowledge/batch proof and argument systems, functional commitments
- Advanced (e.g. homomorphic, attribute-based, functional, laconic) encryption and (e.g. ring, group, threshold, blind) signature schemes
- Time-based cryptography (e.g. time-lock puzzle, verifiable delay function, proof of sequential work)
- Fine-grained cryptography (e.g. against bounded-space-time adversaries)
- Lower bounds and impossibility results
- Key exchange and secure messaging protocols and their formal verification
This is part of Helsinki Institute for Information Technology (HIIT)'s joint call for Research Fellow and Postdoctoral Fellow. For more details about the position, and for the instructions of how to apply, please refer to https://www.hiit.fi/hiit-postdoctoral-and-research-fellow-positions/.
Closing date for applications:
Contact: Chris Brzuska and Russell Lai
More information: https://www.hiit.fi/hiit-postdoctoral-and-research-fellow-positions
25 July 2025
Sanjam Garg, Mohammad Hajiabadi, Dimitris Kolonelos, Abhiram Kothapalli, Guru-Vamsi Policharla
In this work we make progress towards this goal by designing a modular and extensible framework, which allows us to better understand existing schemes and further enables us to construct new witness encryption schemes. The framework is designed around simple but powerful building blocks that we refer to as "gadgets". Gadgets can be thought of as witness encryption schemes for small targeted relations (induced by linearly verifiable arguments) but they can be composed with each other to build larger, more expressive relations that are useful in applications. To highlight the power of our framework we methodically recover past results, improve upon them and even provide new feasibility results.
The first application of our framework is a Registered Attribute-Based Encryption Scheme [Hohenberger et al. (Eurocrypt 23)] with linear sized common reference string (CRS). Numerous Registered Attribute-Based Encryption (R-ABE) constructions have introduced though a black-box R-ABE construction with a linear--in the number of users--CRS has been a persistent open problem, with the state-of-the-art concretely being N^{1.58} (Garg et al. [GLWW, CRYPTO 24]). Empowered by our Witness Encryption framework we provide the first construction of black-box R-ABE with linear-sized CRS. Our construction is based on a novel realization of encryption for DNF formulas that leverages encryption for set membership.
Our second application is a feasibility result for Registered Threshold Encryption (RTE) with succinct ciphertexts. RTE (Branco et al. [ASIACRYPT 2024] is an analogue of the recently introduced Silent Threshold Encryption (Garg et al. [GKPW, CRYPTO 24]) in the Registered Setting. We revisit Registered Threshold Encryption and provide an efficient construction, with constant-sized encryption key and ciphertexts, that makes use of our WE framework.
Paul Gerhart, Daniel Rausch, Dominique Schröder
This paper makes both negative and positive contributions. On the negative side, we show that the functionality proposed by Tairi et al. suffers from critical limitations: - The functionality fails to guarantee extractability and adaptability—the core security properties of adaptor signatures—to higher-level protocols. - No adaptor signature scheme can realize the functionality.
On the positive side, we propose a new UC functionality that faithfully captures the latest security guarantees of adaptor signatures as formalized via game-based notions by Gerhart et al. (EUROCRYPT'24). - Our functionality guarantees extractability, unique extractability, and pre-signature adaptability in a way that is composable and meaningful for higher-level protocols. - We show that it is realizable by an enhanced Schnorr-based adaptor signature scheme that we construct. Our construction maintains compatibility with existing infrastructure and is efficient enough for practical deployment, particularly in Bitcoin-like environments.
Daniel Smith-Tone, Cristian Valenzuela
This efficient method, known as the LL' construction, is designed to add little complexity to HFE decryption while increasing the rank of the resulting map to resist the now very effective cryptanalyses powered by MinRank. The basic idea of the construction is to have two small lists of binary linear forms which when multiplied produce rank $1$ quadratic forms. Random linear combinations of these products are then added to each of the HFE equations, resulting in a masked HFE. The main trick to make the scheme usable is to encrypt an send many random messages so that statistically it is likely that the legitimate user can find a ciphertext that is not perturbed by the construction and which may be decrypted as a plain HFE ciphertext.
We show that this approach is not secure. In particular, we present a method to recover the noise support, a collection of quadratic forms spanning the set of LL' quadratic forms. We then are able to filter out the effect of these maps to recover a compatible HFE map. Finally, we are able to complete the key recovery, achieving efficiently an equivalent private key.
Sebastiano Boscardin, Sebastian A. Spindler
Mojtaba Rfiee
Décio Luiz Gazzoni Filho, Rafael G. Flores e Silva, Alessandro Budroni, Marco Palumbi, Gora Adj
Feng Zhou, Hua Chen, Limin Fan, Junhuai Yang
Alper Çakan, Vipul Goyal
In this work, we show how to copy-protect even a larger class of schemes. We define a class of cryptographic schemes called malleable-puncturable schemes where the only requirement is that one can create a circuit that is capable of answering inputs at points that are unrelated to the challenge in the security game but does not help the adversary answer inputs related to the challenge. This is a flexible generalization of puncturable schemes, and can capture a wide range of primitives that was not known how to copy-protect prior to our work.
Going further, we show that our scheme is secure against arbitrary high min-entropy challenge distributions whereas previous work has only considered schemes that are punctured at pseudorandom points.