International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Updates on the COVID-19 situation are on the Announcement channel.

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

29 January 2023

Lyon, France, 23 April 2023
Event Calendar Event Calendar
Event date: 23 April 2023
Submission deadline: 7 March 2023
Expand
Canterbury, United Kingdom, 14 August - 16 August 2023
Event Calendar Event Calendar
Event date: 14 August to 16 August 2023
Submission deadline: 3 March 2023
Expand
Yokohama, Japan, 29 August - 31 August 2023
Event Calendar Event Calendar
Event date: 29 August to 31 August 2023
Submission deadline: 26 March 2023
Notification: 30 May 2023
Expand

28 January 2023

Ling Sun, Meiqin Wang
ePrint Report ePrint Report
Automatic methods for differential and linear characteristic search are well-established at the moment. Typically, the designers of novel ciphers also give preliminary analytical findings for analysing the differential and linear properties using automatic techniques. However, neither MILP-based nor SAT/SMT-based approaches have fully resolved the problem of searching for actual differential and linear characteristics of ciphers with large S-boxes. To tackle the issue, we present three strategies for developing SAT models for 8-bit S-boxes that are geared toward differential probabilities and linear correlations. While these approaches cannot guarantee a minimum model size, the time needed to obtain models is drastically reduced. The newly proposed SAT model for large S-boxes enables us to establish that the upper bound on the differential probability for 14 rounds of SKINNY-128 is 2^{-131}, thereby completing the unsuccessful work of Abdelkhalek et al. We also analyse the seven AES-based constructions C1 - C7 designed by Jean and Nikolic and compute the minimum number of active S-boxes necessary to cause an internal collision using the SAT method. For two constructions C3 and C5, the current lower bound on the number of active S-boxes is increased, resulting in a more precise security analysis for these two structures.
Expand
Kyle Storrier, Adithya Vadapalli, Allan Lyons, Ryan Henry
ePrint Report ePrint Report
We introduce Grotto, a framework and C++ library for space- and time-efficient $(2+1)$-party piecewise polynomial (i.e., spline) evaluation on secrets additively shared over $\mathbb{Z}_{2^{n}}$. Grotto improves on the state-of-the-art approaches based on distributed comparison functions (DCFs) in almost every metric, offering asymptotically superior communication and computation costs with the same or lower round complexity. At the heart of Grotto is a novel observation about the structure of the ``tree'' representation underlying the most efficient distributed point functions (DPFs) from the literature, alongside an efficient algorithm that leverages this structure to do with a single DPF what state-of-the-art approaches require many DCFs to do. Our open-source Grotto implementation supports evaluating dozens of useful functions out of the box, including trigonometric and hyperbolic functions (and their inverses); various logarithms; roots, reciprocals, and reciprocal roots; sign testing and bit counting; and over two dozen of the most common (univariate) activation functions from the deep-learning literature.
Expand
Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, Bobbin Threadbare
ePrint Report ePrint Report
This paper specifies a new arithmetization-oriented hash function called Tip5. It uses the SHARK design strategy with low-degree power maps in combination with lookup tables, and is tailored to the field with $p=2^{64}-2^{32}+1$ elements.

The context motivating this design is the recursive verification of STARKs. This context imposes particular design constraints, and therefore the hash function's arithmetization is discussed at length.
Expand
Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, Mattia Veroni
ePrint Report ePrint Report
Constructing a supersingular elliptic curve whose endomorphism ring is isomorphic to a given quaternion maximal order (one direction of the Deuring correspondence) is known to be polynomial-time assuming the generalized Riemann hypothesis [KLPT14; Wes21], but notoriously daunting in practice when not working over carefully selected base fields. In this work, we speed up the computation of the Deuring correspondence in general characteristic, i.e., without assuming any special form of the characteristic. Our algorithm follows the same overall strategy as earlier works, but we add simple (yet effective) optimizations to multiple subroutines to significantly improve the practical performance of the method. To demonstrate the impact of our improvements, we show that our implementation achieves highly practical running times even for examples of cryptographic size. One implication of these findings is that cryptographic security reductions based on KLPT-derived algorithms (such as [EHLMP18; Wes22]) have become tighter, and therefore more meaningful in practice. Another is the pure bliss of fast(er) computer algebra: We provide a Sage implementation which works for general primes and includes many necessary tools for computational number theorists' and cryptographers' needs when working with endomorphism rings of supersingular elliptic curves. This includes the KLPT algorithm, translation of ideals to isogenies, and finding supersingular elliptic curves with known endomorphism ring for general primes. Finally, the Deuring correspondence has recently received increased interest because of its role in the SQISign signature scheme [DeF+20]. We provide a short and self-contained summary of the state-of-the-art algorithms without going into any of the cryptographic intricacies of SQISign.
Expand
Georg Land, Adrian Marotzke, Jan Richter-Brockmann, Tim Güneysu
ePrint Report ePrint Report
Streamlined NTRU Prime is a lattice-based Key Encapsulation Mechanism (KEM) that is, together with X25519, currently the default algorithm in OpenSSH 9. Being based on lattice assumptions, it is assumed to be secure also against attackers with access to large-scale quantum computers. While Post-Quantum Cryptography (PQC) schemes have been subject to extensive research in the recent years, challenges remain with respect to protection mechanisms against attackers that have additional side-channel information such as the power consumption of a device processing secret data. As a countermeasure to such attacks, masking has been shown to be a promising and effective approach. For public-key schemes, including any recent PQC schemes, usually a mixture of Boolean and arithmetic approaches are applied on an algorithmic level. Our generic hardware implementation of Streamlined NTRU Prime decapsulation, however, follows an idea that until now was assumed to be only applicable to symmetric cryptography: gate-level masking. There, a hardware design that consists of logic gates is transformed into a secure implementation by replacing each gate with a composably secure gadget that operates on uniform random shares of secret values. In our work, we show the feasibility of applying this approach also to PQC schemes and present the first Public-Key Cryptography (PKC) – pre- and post-quantum – implementation masked at gate level considering several trade-offs and design choices. We synthesize our implementation both for Artix-7 Field-Programmable Gate Arrays (FPGAs) and 45 nm Application-Specific Integrated Circuits (ASICs), yielding practically feasible results regarding area, randomness demand and latency. Finally, we also analyze the applicability of our concept to Kyber which will be standardized by the National Institute of Standards and Technology (NIST).
Expand

27 January 2023

Anamaria Costache, Lea Nürnberger, Rachel Player
ePrint Report ePrint Report
In this work, we investigate the BGV scheme as implemented in HElib. We begin by performing an implementation-specific noise analysis of BGV. This allows us to derive much tighter bounds than what was previously done. To confirm this, we compare our bounds against the state of the art. We find that, while our bounds are at most $1.8$ bits off the experimentally observed values, they are as much as $29$ bits tighter than previous work. Finally, to illustrate the importance of our results, we propose new and optimised parameters for HElib. In HElib, the special modulus is chosen to be $k$ times larger than the current ciphertext modulus $Q_i$. For a ratio of subsequent ciphertext moduli $\log\left( \frac{Q_i}{Qi−1}\right) = 54$ (a very common choice in HElib), we can optimise $k$ by up to $26$ bits. This means that we can either enable more multiplications without having to switch to larger parameters, or reduce the size of the evaluation keys, thus reducing on communication costs in relevant applications. We argue that our results are near-optimal.
Expand
Runchao Han, Jiangshan Yu
ePrint Report ePrint Report
Thesecurityofmanyprotocolssuchasvotingandblockchains relies on a secure source of randomness. Decentralised Randomness Beacon (DRB) has been considered as a promising approach, where a set of participants jointly generates a sequence of random outputs. While the DRBs have been extensively studied, they failed to capture the advantage that some participants learn random outputs earlier than other participants. In time-sensitive protocols whose execution depends on the randomness from a DRB, such an advantage allows the adversary to behave adaptively according to random outputs, compromising the fairness and/or security in these protocols.

In this paper, we formalise a new property, delivery-fairness, to quantify the advantage. In particular, we distinguish two aspects of delivery-fairness, namely length-advantage, i.e., how many random outputs an adversary can learn earlier than correct participants, and time-advantage, i.e., how much time an adversary can learn a given random output earlier than correct participants. In addition, we prove the lower bound of delivery-fairness showing optimal guarantee. We further analyse the delivery-fairness guarantee of state-of-the-art DRBs and discuss insights, which, we show through case studies, could help improve delivery-fairness of existing systems to its optimal.
Expand
Senyang Huang, Rui Qi Sim, Chitchanok Chuengsatiansup, Qian Guo, Thomas Johansson
ePrint Report ePrint Report
In this paper, we present the first chosen-ciphertext (CC) cache-timing attacks on the reference implementation of HQC. We build a cache-timing based distinguisher for implementing a plaintext-checking (PC) oracle. The PC oracle uses side-channel information to check if a given ciphertext decrypts to a given message. This is done by identifying a vulnerability during the generating process of two vectors in the reference implementation of HQC. We also propose a new method of using PC oracles for chosen-ciphertext side-channel attacks against HQC, which may have independent interest.

We show a general proof-of-concept attack, where we use the Flush&Reload technique and also derive, in more detail, a practical attack on an HQC execution on Intel SGX, where the Prime&Probe technique is used. We show the exact path to do key recovery by explaining the detailed steps, using the PC oracle. In both scenarios, the new attack requires $53,857$ traces on average with much fewer PC oracle calls than the timing attack of Guo et al. CHES 2022 on an HQC implementation.
Expand
Xiaoen Lin, Le He, Hongbo Yu
ePrint Report ePrint Report
This paper combines techniques from several previous papers with some modifications to improve the previous cryptanalysis of 3-round Keccak-256. Furthermore, we propose a fast rebuilding method to improve the efficiency of solving equation systems. As a result, the guessing times of finding a preimage for 3-round Keccak-256 are decreased from $2^{65}$ to $2^{52}$, and the solving time of each guess is decreased from $2^{9}$ 3-round Keccak calls to $2^{5.3}$ 3-round Keccak calls. We identify a preimage of all '0' digest for 3-round Keccak-256 to support the effectiveness of our methodology.
Expand
Ye Dong, Xiaojun Chen, Weizhan Jing, Kaiyun Li, Weiping Wang
ePrint Report ePrint Report
Secure neural network inference has been a promising solution to private Deep-Learning-as-a-Service, which enables the service provider and user to execute neural network inference without revealing their private inputs. However, the expensive overhead of current schemes is still an obstacle when applied in real applications. In this work, we present \textsc{Meteor}, an online communication-efficient and fast secure 3-party computation neural network inference system aginst semi-honest adversary in honest-majority. The main contributions of \textsc{Meteor} are two-fold: \romannumeral1) We propose a new and improved 3-party secret sharing scheme stemming from the \textit{linearity} of replicated secret sharing, and design efficient protocols for the basic cryptographic primitives, including linear operations, multiplication, most significant bit extraction, and multiplexer. \romannumeral2) Furthermore, we build efficient and secure blocks for the widely used neural network operators such as Matrix Multiplication, ReLU, and Maxpool, along with exploiting several specific optimizations for better efficiency. Our total communication with the setup phase is a little larger than SecureNN (PoPETs'19) and \textsc{Falcon} (PoPETs'21), two state-of-the-art solutions, but the gap is not significant when the online phase must be optimized as a priority. Using \textsc{Meteor}, we perform extensive evaluations on various neural networks. Compared to SecureNN and \textsc{Falcon}, we reduce the online communication costs by up to $25.6\times$ and $1.5\times$, and improve the running-time by at most $9.8\times$ (resp. $8.1\times$) and $1.5\times$ (resp. $2.1\times$) in LAN (resp. WAN) for the online inference.
Expand
Gabrielle Beck, Aarushi Goel, Aditya Hegde, Abhishek Jain, Zhengzhong Jin, Gabriel Kaptchuk
ePrint Report ePrint Report
Multiparty garbling is the most popular approach for constant-round secure multiparty computation (MPC). Despite being the focus of significant research effort, instantiating prior approaches to multiparty garbling results in constant-round MPC that can not realistically accommodate large numbers of parties. In this work we present the first global-scale multiparty garbling protocol. The per-party communication complexity of our protocol decreases as the number of parties participating in the protocol increases---for the first time matching the asymptotic communication complexity of non-constant round MPC protocols. Our protocol achieves malicious security in the honest-majority setting and relies on the hardness of the Learning Party with Noise assumption.
Expand

26 January 2023

Julius Hermelink, Erik Mårtensson, Simona Samardjiska, Peter Pessl, Gabi Dreo Rodosek
ePrint Report ePrint Report
In LWE-based KEMs, observed decryption errors leak information about the secret key in the form of equations or inequalities. Several practical fault attacks have already exploited such leakage by either directly applying a fault or enabling a chosen-ciphertext attack using a fault. When the leaked information is in the form of inequalities, the recovery of the secret key is not trivial. Recent methods use either statistical or algebraic methods (but not both), with some being able to handle incorrect information.

We answer this question positively by proposing an error-tolerant combination of statistical and algebraic methods that make use of the advantages of both approaches. The combination enables us to improve upon existing methods -- we use both fewer inequalities and are more resistant to errors. We further provide precise security estimates based on the number of available inequalities.

Our recovery method applies to several types of implementation attacks in which decryption errors are used in a chosen-ciphertext attack. We practically demonstrate the improved performance of our approach in a key-recovery attack against Kyber with fault-induced decryption errors.
Expand
Behzad Abdolmaleki, Noemi Glaeser, Sebastian Ramacher, Daniel Slamanig
ePrint Report ePrint Report
Non-interactive zero-knowledge proofs (NIZKs) and in particular succinct NIZK arguments of knowledge (so called zk-SNARKs) increasingly see real-world adoption in large and complex systems.

A requirement that turns out to be important for NIZKs is ensuring non-malleability of proofs, which can be achieved via the property of simulation extractability (SE). Moreover, many zk-SNARKs require a trusted setup, i.e., a common reference string (CRS), and in practice it is desirable to reduce the trust in the CRS generation. Latter can be achieved via the notions of subversion or updatable CRS. Another important property when deployed in large and complex systems is the secure composition of protocols, e.g., via using the Universal Composability (UC) framework. Relying on the UC frameworks allows to arbitrarily and securely compose protocols in a modular way.

In this work, we are interested in whether zk-SNARKs can provide all these desired properties. This is a tricky task as the UC framework rules out several natural techniques for such a construction. Our main result is to show that achieving these properties is indeed possible in a generic and modular way when slightly relaxing the succinctness properties of zk-SNARKs to those of a circuit-succinct NIZK which is not witness-succinct, i.e., by increasing the proof size of the underlying zk-SNARK by the size of the witness $w$. We will argue that for various practical applications of zk-SNARKs this overhead is perfectly tolerable. Our starting point is a framework by Abdolmaleki et al. called Lamassu (ACM CCS'20) which we extend in several directions. Moreover, we implement our compiler on top of Sonic (ACM CCS'19) and provide benchmarks as well as a discussion on the choice of the required primitives.
Expand
Mariana Gama, Emad Heydari Beni, Emmanuela Orsini, Nigel P. Smart, Oliver Zajonc
ePrint Report ePrint Report
While the efficiency of secure multi-party computation protocols has greatly increased in the last few years, these improvements and protocols are often based on rather unrealistic, idealised, assumptions about how technology is deployed in the real world. In this work we examine multi-party computation protocols in the presence of two major constraints present in deployed systems. Firstly, we consider the situation where the parties are connected not by direct point-to-point connections, but by a star-like topology with a few central post-office style relays. Secondly, we consider MPC protocols with a strong honest majority ($n \gg t/2$) in which we have stragglers (some parties are progressing slower than others). We model stragglers by allowing the adversary to delay messages to and from some parties for a given length of time.

We first show that having only a single honest rely is enough to ensure consensus of the messages sent within a protocol; secondly, we show that special care must be taken to describe multiplication protocols in the case of relays and stragglers and that some well known protocols do not guarantee privacy and correctness in this setting; thirdly, we present an efficient honest-majority MPC protocol which can be run on top of the relays and which provides active-security with abort in the case of a strong honest majority, even when run with stragglers. We back up our protocol presentation with both experimental evaluations and simulations of the effect of the relays and delays on our protocol.
Expand
Michael Scott
ePrint Report ePrint Report
The TLS (Transport Layer Security) protocol is the most important, most attacked, most analysed and most used cryptographic protocol in the world today. TLS is critical to the integrity of the Internet, and if it were to be broken e-commerce would become impossible, with very serious implications for the global economy. Furthermore TLS is likely to assume even greater significance in the near future with the rapid growth of an Internet of Things (IoT) -- a multiplicity of internet connected devices all engaged in secure inter-communication. However the impending invention of a Cryptographically Relevant Quantum Computer (CRQC) would represent an existential threat to TLS in its current form. As it stands the latest version TLS1.3, benefiting as it does from years of research and study, provides effective security, but it must soon be updated to resist this new threat. In this research we first undertake a new clean-room implementation of a small-footprint open source TLS1.3, written in C++ and Rust, and suitable for IoT applications. Our implementation is designed to be cryptographically agile, so that it can easily accomodate new post-quantum cryptographic primitives. Next we use this new implementation as a vehicle to study the impact of going post-quantum, with a particular emphasis on the impact on the Internet of Things. Finally we showcase the flexibility of our implementation by proposing an implementation of TLS that uses identity-based encryption to mitigate this impact.
Expand
Watson Ladd, Marloes Venema, Tanya Verma
ePrint Report ePrint Report
TLS termination, which is essential to network and security infrastructure providers, is an extremely latency sensitive operation that benefits from access to sensitive key material close to the edge. However, increasing regulatory concerns prompt customers to demand sophisticated controls on where their keys may be accessed. While traditional access-control solutions rely on a highly available centralized process to enforce access, the round-trip latency and decreased fault tolerance make this approach unappealing. Furthermore, the desired level of customer control is at odds with customizing the distribution process for each key.

To solve this dilemma, we have designed and implemented Portunus, a cryptographic storage and access control system built using a variant of public-key cryptography called attribute-based encryption (ABE). Using Portunus, TLS keys are protected using ABE under a policy chosen by the customer. Each server is issued unique ABE keys based on its attributes, allowing it to decrypt only the TLS keys for which it satisfies the policy. Thus, the encrypted keys can be stored at the edge, with access control enforced passively through ABE. If a server receives a TLS connection but is not authorized to decrypt the necessary TLS key, the request is forwarded directly to the nearest authorized server, further avoiding the need for a centralized coordinator. In comparison, a trivial instantiation of this system using standard public-key cryptography might wrap each TLS key with the key of every authorized data center. This strategy, however, multiplies the storage overhead by the number of data centers. We have deployed Portunus on Cloudflare's global network of over 400 data centers. Our measurements indicate that we can handle millions of requests per second globally, making it one of the largest deployments of ABE.
Expand
Pritha Gupta, Jan Peter Drees, Eyke Hüllermeier
ePrint Report ePrint Report
The usage of convolutional neural networks (CNNs) to break cryptographic systems through hardware side-channels has enabled fast and adaptable attacks on devices like smart cards and TPMs. Current literature proposes fixed CNN architectures designed by domain experts to break such systems, which is time-consuming and unsuitable for attacking a new system. Recently, an approach using neural architecture search (NAS), which is able to acquire a suitable architecture automatically, has been explored. These works use the secret key information in the attack dataset for optimization and only explore two different search strategies using one-dimensional CNNs. We propose a NAS approach that relies only on using the profiling dataset for optimization, making it fully black-box. Using a large-scale experimental parameter study, we explore which choices for NAS, such as 1-D or 2-D CNNs and search strategy, produce the best results on 10 state-of-the-art datasets for Hamming weight and identity leakage models. We show that applying the random search strategy on 1-D inputs results in a high success rate and retrieves the correct secret key using a single attack trace on two of the datasets. This combination matches the attack efficiency of fixed CNN architectures, outperforming them in 4 out of 10 datasets. Our experiments also point toward the need for repeated attack evaluations of machine learning-based solutions in order to avoid biased performance estimates.
Expand
◄ Previous Next ►