International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

28 September 2021

Endres Puschner, Christoph Saatjohann, Markus Willing, Christian Dresen, Julia Köbe, Benjamin Rath, Christof Paar, Lars Eckardt, Uwe Haverkamp, Sebastian Schinzel
ePrint Report ePrint Report
Modern implantable cardiologic devices communicate via radio frequency techniques and nearby gateways to a backend server on the internet. Those implanted devices, gateways, and servers form an ecosystem of proprietary hardware and protocols that process sensitive medical data and is often vital for patients’ health.

This paper analyzes the security of this Ecosystem, from technical gateway aspects, via the programmer, to configure the implanted device, up to the processing of personal medical data from large cardiological device producers. Based on a real-world attacker model, we evaluated different devices and found several severe vulnerabilities. Furthermore, we could purchase a fully functional programmer for implantable cardiological devices, allowing us to re-program such devices or even induce electric shocks on untampered implanted devices.

Additionally, we sent several Art. 15 and Art. 20 GDPR inquiries to manufacturers of implantable cardiologic devices, revealing non-conforming processes and a lack of awareness about patients’ rights and companies’ obligations. This, and the fact that many vulnerabilities are still to be found after many vulnerability disclosures in recent years, present a worrying security state of the whole ecosystem.
Expand

27 September 2021

Status.im
Job Posting Job Posting
We are the Blockchain Infrastructure Team, and we are building the foundation used by other projects at the Status Network. We are researching consensus algorithms, Multi-Party Computation techniques, ZKPs and other cutting-edge solutions with the aim to take the blockchain technology to the next level of security, decentralization and scalability for a wide range of use cases. We are currently in a research phase, working with models and simulations. In the near future, we will start implementing the research. You will have the opportunity to participate in developing -and improving- the state of the art of blockchain technologies, as well as turning it into a reality

Key Responsibilities:

  • This role is dedicated to pure research
  • Primarily, ensuring that solutions are sound and diving deeper into their formal definition.
  • Additionally, he/she would be regularly going through papers, bringing new ideas and staying up-to-date.
  • Designing, specifying and verifying distributed systems by leveraging formal and experimental techniques.
  • Conducting theoretical and practical analysis of the performance of distributed systems.
  • Designing and analysing incentive systems.
  • Researching new techniques for designing, analysing and implementing dependable distributed systems.
  • Publishing and presenting research results both internally and externally.

    Key Responsibilities:

  • Strong background in Computer Science and Math, or a related area.
  • Academic background (The ability to analyze, digest and improve the State of the Art in our fields of interest. Specifically, familiarity with formal proofs and/or the scientific method.)
  • Distributed Systems with a focus on Blockchain
  • Analysis of algorithms Familiarity with Python and/or complex systems modeling software
  • Deep knowledge of algorithms (much more academic, such as have dealt with papers, moving from research to pragmatic implementation)
  • Experience in analysing the correctness and security of distributed systems.
  • Familiarity with the application of formal method techniques.
  • Comfortable with “reverse engineering” code

    Closing date for applications:

    Contact: Angel via discord @ LilChiChi#0021 Or LinkedIn https://www.linkedin.com/in/angelrgutierrez/

    More information: https://jobs.status.im/jobs/23946

  • Expand
    University of Wollongong, Australia
    Job Posting Job Posting
    The Institute of Cybersecurity and Cryptology (iC2) at the University of Wollongong is looking for outstanding PhD students who are interested in digital finance, blockchain, and cryptocurrencies. We offer scholarships, including living expenses for up to $50,000/annum AUD (tax free) plus a tuition waiver. There are 12 positions in total. If you have any questions, please contact Prof. Willy Susilo at (wsusilo@uow.edu.au). Or else, please send your cover letter and CV to Dr. Yannan Li (yannan@uow.edu.au) asap to secure your spot. Applications will be assessed immediately. Join us in this exciting journey! #UOW

    Closing date for applications:

    Contact: Prof. Willy Susilo and Dr. Yannan Li

    Expand
    Cape Privacy, North America, Fully Remote
    Job Posting Job Posting
    Cape Privacy is looking for a Machine Learning Privacy Researcher/Engineer to help build Cape Privacy's innovative SaaS-based encrypted learning platform. This product sits at the intersection of data science, machine learning, privacy, and cryptography; allowing organizations to enhance ML models through privacy-preserving collaboration. Responsibilities include working with our Product team and other researchers & engineers to bring the product vision to reality. Ideal candidates will have an MS or higher in machine learning, data science, privacy or cryptography; and academic or commercial experience in privacy-preserving technologies.

    Closing date for applications:

    Contact: David Besemer, VP Engineering

    More information: https://capeinc.bamboohr.com/jobs/view.php?id=32

    Expand
    Spanish National Research Council (CSIC)
    Job Posting Job Posting
    The Research group on Cryptology and Information Security (GiCSI) of the Spanish National Research Council is seeking highly motivated professionals in conducting research in the area of cryptographic privacy-enhancing technologies, blockchain-based protocols and security protocols. The selected candidate will part of GiCSI’s team in the context of the H2020 SPIRS (Secure Platform for Ict systems Rooted at the Silicon manufacturing process) project. This project encompasses the complete design of a platform, so-called SPIRS platform, which integrates a hardware dedicated Root of Trust (RoT) and a processor core with the capability of offering a full suite of security services. Furthermore, the SPIRS platform will be able to leverage this capability to support privacy-respectful attestation mechanisms and enable trusted communication channels across 5G infrastructures. RoT is implemented in hardware with a dedicated circuitry to extract a unique digital identifier for the SPIRS platform during its entire lifetime. To build a complete solution, the project also features a Trusted Execution Environment (TEE), secure boot, and runtime integrity. Furthermore, resilience and privacy protection are major concerns in this project, and it endeavors to the design of a decentralized trust management framework targeted to minimize the impact of Single Point of Failure (SPOF) risks and achieve adequate security and privacy tradeoffs. To facilitate the tasks of validation and testing, SPIRS platform is conceived as an open platform that can easily integrate other building blocks and facilities upgrades. The project goes beyond the construction of the SPIRS platform and it provides solutions to integrate it in the deployment of cryptographic protocols and network infrastructures in a trustworthy way, leveraging the RoT provided by the platform. To validate SPIRS results, the project considers two different scenarios: Industry 4.0 and 5G Technologies.

    Closing date for applications:

    Contact: David Arroyo Guardeño, Ph. D. Research group on Cryptology and Information Security (GiCSI) Institute of Physical and Information Technologies (ITEFI) Spanish National Research Council (CSIC) https://dargcsic.github.io/

    More information: https://dargcsic.github.io/posts/2021-09-21-spirs

    Expand
    Marcel Armour, Carlos Cid
    ePrint Report ePrint Report
    In this work, we show how weak key forgeries against polynomial hash based Authenticated Encryption (AE) schemes, such as AES-GCM, can be leveraged to launch partitioning oracle attacks. Partitioning oracle attacks were recently introduced by Len et al. (Usenix'21) as a new class of decryption error oracle which, conceptually, takes a ciphertext as input and outputs whether or not the decryption key belongs to some known subset of keys. Partitioning oracle attacks allow an adversary to query multiple keys simultaneously, leading to practical attacks against low entropy keys (e.g. those derived from passwords).

    Weak key forgeries were given a systematic treatment in the work of Procter and Cid (FSE'13), who showed how to construct MAC forgeries that effectively test whether the decryption key is in some (arbitrary) set of target keys. Consequently, it would appear that weak key forgeries naturally lend themselves to constructing partition oracles; we show that this is indeed the case, and discuss some practical applications of such an attack. Our attack applies in settings where AE schemes are used with static session keys, and has the particular advantage that an attacker has full control over the underlying plaintexts, allowing any format checks on underlying plaintexts to be met -- including those designed to mitigate against partitioning oracle attacks.

    Prior work demonstrated that key commitment is an important security property of AE schemes, in particular settings. Our results suggest that resistance to weak key forgeries should be considered a related design goal. Lastly, our results reinforce the message that weak passwords should never be used to derive encryption keys.
    Expand
    Max Heiser
    ePrint Report ePrint Report
    The asymptotically fastest known method for solving SVP is via lattice sieving, an algorithm whose computational bottleneck is solving the Nearest Neighbor Search problem. The best known algorithm for solving this problem is Hypercone Locality Sensitive Filtering (LSF). The classical time complexity of a sieve using Hypercone LSF is \(2^{0.2925d+o(d)}\). The quantum time complexity is \(2^{0.2653d+o(d)}\), which is acquired by using Grover's algorithm to speed up part of the enumeration.

    We present an improvement to the quantum algorithm, which improves the time complexity to \(2^{0.2571d+o(d)}\). Essentially, we provide a way to use Grover's algorithm to speed up another part of the process, providing a better tradeoff. This improvement affects the security of lattice-based encryption schemes, including NIST PQC Round 3 finalists.
    Expand
    Daniel M. Kane, Shahed Sharif, Alice Silverberg
    ePrint Report ePrint Report
    We propose a new idea for public key quantum money. In the abstract sense, our bills are encoded as a joint eigenstate of a fixed system of commuting unitary operators. We perform some basic analysis of this black box system and show that it is resistant to black box attacks. In order to instantiate this protocol, one needs to find a cryptographically complicated system of computable, commuting, unitary operators. To fill this need, we propose using Brandt operators acting on the Brandt modules associated to certain quaternion algebras. We explain why we believe this instantiation is likely to be secure.
    Expand
    Angelique Faye Loe, Liam Medley, Christian O'Connell, Elizabeth A. Quaglia
    ePrint Report ePrint Report
    We present a novel construction for a Verifiable Delay Function (VDF), in which the prover is challenged to produce the factorisation of a special class of RSA modulus. Our approach produces a VDF with a very efficient verification procedure.

    The properties of our VDF allow us to establish the design of the first practical Delay Encryption scheme, a primitive introduced at EUROCRYPT 2021. We provide a formal security analysis of our results, as well as an implementation study detailing the practical performance of our VDF.
    Expand
    Kavya Sreedhar, Mark Horowitz, Christopher Torng
    ePrint Report ePrint Report
    The verifiable delay function (VDF) is a cryptographic primitive that requires a fixed amount of time for evaluation but is still efficiently verifiable. VDFs have been considered a promising candidate for the core function for blockchain systems given these fast verification but slow evaluation properties. NUDUPL is a state-of-the-art algorithm for VDFs and revolves around a core computation involving squaring within class groups of binary quadratic forms. While prior work has focused on fast software implementations for this squaring, few papers have investigated hardware acceleration, and no prior works accelerate the NUDUPL algorithm in particular. Since the most time-consuming operation in the NUDUPL algorithm is an extended GCD calculation, we present an efficient design and implementation to accelerate this computation. We conduct a detailed study of the hardware design space and build an ASIC implementation for 1024-bit integers in an open-source 180nm-130nm hybrid technology (SKY130). Our design runs with a 3ns cycle time and takes an average of 3.7us per computation. After normalizing technologies for comparison, we achieve a VDF squaring speedup of 10X compared to the only prior class-group-based VDF accelerator and 4X compared to the Chia Network's software implementation, the highest speedup possible by accelerating only the GCD. We sped up the extended GCD calculation by 14X compared to the hardware implementation and 38X compared to the software. We make our entire codebase publicly available as part of our tapeout with the Efabless Open MPW2 shuttle sponsored by Google.
    Expand

    24 September 2021

    Malika Izabachène, Anca Nitulescu, Paola de Perthuis, David Pointcheval
    ePrint Report ePrint Report
    Oblivious Polynomial Evaluation (OPE) schemes are interactive protocols between a sender with a private polynomial and a receiver with a private evaluation point where the receiver learns the evaluation of the polynomial in their point and no additional information. They are used in Private Set Intersection (PSI) protocols.

    We introduce a scheme for OPE in the presence of malicious senders, enforcing honest sender behavior and consistency by adding verifiability to the calculations.

    The main tools used are FHE for input privacy and arguments of knowledge for the verifiability property. MyOPE deploys sublinear communication costs in the sender's polynomial degree and one to five rounds of interaction.

    In other words, it can be used as a verifiable computation scheme for polynomial evaluation over FHE ciphertexts. While classical techniques in pairing-based settings allow generic succinct proofs for such evaluations, they require large prime order subgroups which highly impact the communication complexity, and prevent the use of FHE with practical parameters. MyOPE builds on generic secure encodings techniques that allow composite integers and enable real-world FHE parameters and even RNS-based optimizations. It is best adapted for the unbalanced setting where the degree of the polynomial and the computing power of the sender are large.

    MyOPE can be used as a building block in specialized two-party protocols such as PSI (this use-case is hereafter described), oblivious keyword search, set membership and more using the OPE instantiation.

    As another contribution, our techniques are generalized to applications other than OPE, such as Symmetric Private Information Retrieval (SPIR), to make them secure against a malicious sender.
    Expand
    Andreas Erwig, Sebastian Faust, Siavash Riahi
    ePrint Report ePrint Report
    A $(t,n)$-public key threshold cryptosystem allows distributing the execution of a cryptographic task among a set of $n$ parties by splitting the secret key required for the computation into $n$ shares. A subset of at least $t+1$ honest parties is required to execute the task of the cryptosystem correctly, while security is guaranteed as long as at most $t < \frac{n}{2}$ parties are corrupted. Unfortunately, traditional threshold cryptosystems do not scale well, when executed at large-scale (e.g., in the Internet-environment). In such settings, a possible approach is to select a subset of $n$ players (called a committee) out of the entire universe of $N\gg n$ parties to run the protocol. If done naively, however, this means that the adversary's corruption power does not scale with $N$ as otherwise, the adversary would be able to corrupt the entire committee. A beautiful solution for this problem is given by Benhamouda et al. (TCC 2020) who present a novel form of secret sharing, where the efficiency of the protocol is \emph{independent} of $N$, but the adversarial corruption power \emph{scales} with $N$. They achieve this through a novel mechanism that guarantees that parties in a committee stay anonymous until they start to interact within the protocol.

    In this work, we initiate the study of large-scale threshold cryptosystems. We present novel protocols for distributed key generation, threshold encryption, and signature schemes that guarantee security in large-scale environments with complexity independent of $N$. One of our key contributions is to show how to generically transform threshold encryption and signature schemes, which are secure against static adversaries (and satisfy certain additional properties), to secure threshold cryptosystems that offer strong security in the large-scale setting.
    Expand
    Jorge Chavez-Saab, Francisco Rodríguez Henríquez, Mehdi Tibouchi
    ePrint Report ePrint Report
    In this paper, we investigate the problem of constructing postquantum-secure verifiable delay functions (VDFs), particularly based on supersingular isogenies. Isogeny-based VDF constructions have been proposed before, but since verification relies on pairings, they are broken by quantum computers. We propose an entirely different approach using succinct non-interactive arguments (SNARGs), but specifically tailored to the arithmetic structure of the isogeny setting to achieve good asymptotic efficiency. We obtain an isogeny-based VDF construction with postquantum security, quasi-logarithmic verification, and requiring no trusted setup. As a building block, we also construct non-interactive arguments for isogeny walks in the supersingular graph over Fp2 , which may be of independent interest.
    Expand
    Loïs Huguenin-Dumittan, Serge Vaudenay
    ePrint Report ePrint Report
    Combining several primitives together to offer greater security is an old idea in cryptography. Recently, this concept has resurfaced as it could be used to improve trust in new Post-Quantum (PQ) schemes and smooth the transition to PQ cryptography. In particular, several ways to combine key exchange mechanisms (KEMs) into a secure hybrid KEM have been proposed. In this work, we observe that most PQ KEMs are built using a variant of the Fujisaki-Okamoto (FO) transform. Thus, we propose several efficient combiners that take OW-CPA public-key encryption schemes (PKEs) and directly build hybrid IND-CCA KEMs. Our constructions are secure in the ROM and QROM and can be seen as generalizations of the FO transform. We also study how the hash functions (ROs) used in our transforms can be combined in order to improve efficiency and security. In a second part, we implement a hybrid KEM using one of our combiners as a proof-of-concept and benchmark it. More precisely, we build a hybrid IND-CCA KEM from the CPA-secure versions of HQC and LAC, two NIST Round 2 PQ proposals. We show that the resulting KEM offers comparable performances to HQC, thus improving security at a small cost. Finally, we discuss which PQ schemes should be combined in order to offer the best efficiency/security trade-off.
    Expand
    Poulami Das, Andreas Erwig, Sebastian Faust, Julian Loss, Siavash Riahi
    ePrint Report ePrint Report
    In many cryptocurrencies, the problem of key management has become one of the most fundamental security challenges. Typically, keys are kept in designated schemes called 'Wallets', whose main purpose is to store these keys securely. One such system is the BIP32 wallet (Bitcoin Improvement Proposal 32), which since its introduction in 2012 has been adopted by countless Bitcoin users and is one of the most frequently used wallet system today. Surprisingly, very little is known about the concrete security properties offered by this system. In this work, we propose the first formal analysis of the BIP32 system in its entirety and without any modification. Building on the recent work of Das et al. (CCS `19), we put forth a formal model for hierarchical deterministic wallet systems (such as BIP32) and give a security reduction in this model from the existential unforgeability of the ECDSA signature algorithm that is used in BIP32. We conclude by giving concrete security parameter estimates achieved by the BIP32 standard, and show that by moving to an alternative key derivation method we can achieve a tighter reduction offering an additional 20 bits of security (111 vs. 91 bits of security) at no additional costs.
    Expand
    Ehsan Ebrahimi
    ePrint Report ePrint Report
    In this paper, we construct an efficient interactive proof system for the graph 3-coloring problem and shows that it is computationally zero-knowledge against a quantum malicious verifier. Our protocol is inline with the sketch of an efficient protocol by Brassard and Crepéau (FOCS 1986) that later has been elaborated by Kilian (STOC 1992). Their protocol is not post-quantum secure since its soundness property holds based on the intractability of the factoring problem. Putting aside the post-quantum security, we argue that Kilian's interactive protocol for the graph 3-coloring problem does not fulfill the soundness property even in the classical setting.

    In this paper, we propose an XOR-homomorphic commitment scheme based on the Learning Parity with Noise (LPN) problem and use it to construct an efficient quantum computationally zero-knowledge interactive proof system for the graph 3-coloring problem.
    Expand
    Aleksei Udovenko
    ePrint Report ePrint Report
    Integral cryptanalysis is a powerful tool for attacking symmetric primitives, and division property is a state-of-the-art framework for finding integral distinguishers.

    This work describes new theoretical and practical insights into traditional bit-based division property. We focus on analyzing and exploiting monotonicity/convexity of division property and its relation to the graph indicator. In particular, our investigation leads to a new compact representation of propagation, which allows CNF/MILP modeling for larger S-Boxes, such as 16-bit Super-Sboxes of lightweight block ciphers or even 32-bit random S-boxes. This solves the challenge posed by Derbez and Fouque (ToSC 2020), who questioned the possibility of SAT/SMT/MILP modeling of 16-bit Super-Sboxes. As a proof-of-concept, we model the Super-Sboxes of the 8-round LED by CNF formulas, which was not feasible by any previous approach.

    Our analysis is further supported by an elegant algorithmic framework. We describe simple algorithms for computing division property of a set of $n$-bit vectors in time $O(n2^n)$, reducing such sets to minimal/maximal elements in time $O(n2^n)$, computing division property propagation table of an $n\times m$-bit S-box and its compact representation in time $O((n+m)2^{n+m})$. In addition, we develop an advanced algorithm tailored to "heavy" bijections, allowing to model, for example, a randomly generated 32-bit S-box.
    Expand
    Song Bian, Dur E Shahwar Kundi, Kazuma Hirozawa, Weiqiang Liu, Takashi Sato
    ePrint Report ePrint Report
    Recently, the application of multi-party secure computing schemes based on homomorphic encryption in the field of machine learning attracts attentions across the research fields. Previous studies have demonstrated that secure protocols adopting packed additive homomorphic encryption (PAHE) schemes based on the ring learning with errors (RLWE) problem exhibit significant practical merits, and are particularly promising in enabling efficient secure inference in machine-learning-as-a-service applications. In this work, we introduce a new technique for performing homomorphic linear transformation (HLT) over PAHE ciphertexts. Using the proposed HLT technique, homomorphic convolutions and inner products can be executed without the use of number theoretic transform and the rotate-and-add algorithms that were proposed in existing works. To maximize the efficiency of the HLT technique, we propose APAS, a hardware-software co-design framework consisting of approximate arithmetic units for the hardware acceleration of HLT. In the experiments, we use actual neural network architectures as benchmarks to show that APAS can improve the computational and communicational efficiency of homomorphic convolution by 8x and 3x, respectively, with an energy reduction of up to 26x as compared to the ASIC implementations of existing methods.
    Expand
    Kazuhiko Minematsu, Akiko Inoue, Katsuya Moriwaki, Maki Shigeri, Hiroyasu Kubo
    ePrint Report ePrint Report
    A large number of the symmetric-key mode of operations, such as classical CBC-MAC, have serial structures. While a serial mode gives an implementation advantage in terms of required memory or footprint compared to the parallel counterparts, it wastes the capability of parallel process even when it is available. The problem is becoming more relevant as lightweight cryptography is going to be deployed in the real world. In this article, we propose an alternative implementation strategy for serial MAC modes and serial authenticated encryption (AE) modes that allows 2-block parallel operation for verification/decryption. Our proposal maintains the original functionality and security. It is simple yet novel, and generally applicable to a wide range of existing modes including two NIST recommendations, CMAC and CCM. We demonstrate the effectiveness of our proposal by showing several case studies with software implementations.
    Expand
    Seungjin Baek, Hocheol Nam, Yongwoo Oh, Muoi Tran, Min Suk Kang
    ePrint Report ePrint Report
    Recent Bitcoin attacks [CCS'21, CCS'21, ICDCS'19] commonly exploit the phenomenon of so-called weak block synchronization in Bitcoin. The attacks use two independently-operated Bitcoin monitors — i.e., Bitnodes and a system of customized supernodes — to confirm that block propagation in Bitcoin is surprisingly slow. In particular, Bitnodes constantly reports that around 30% of nodes are 3 blocks (or more) behind the blockchain tip and the supernodes show that on average more than 60% of nodes do not receive the latest block even after waiting for 10 minutes. In this paper, we carefully re-evaluate these controversial claims with our own experiments in the live Bitcoin network and show that block propagation in Bitcoin is, in fact, fast enough (e.g., most peers we monitor receive new blocks in about 4 seconds) for its safety property. We identify several limitations and bugs of the two monitors, which have led to these inaccurate claims about the Bitcoin block synchronization. We finally ask several open-ended questions regarding the technical and ethical issues around monitoring blockchain networks.
    Expand
    ◄ Previous Next ►