International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Updates on the COVID-19 situation are on the Announcement channel.

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

10 October 2019

Eric Brier, David Naccache
ePrint Report ePrint Report
This paper presents an efficient deterministic algorithm for computing $13$\textsuperscript{th}-power residue symbols in the cyclotomic field $\mathbb{Q}(\zeta_{13})$, where $\zeta_{13}$ is a primitive $13$\textsuperscript{th} root of unity.

The new algorithm finds applications in the implementation of certain cryptographic schemes and closes a gap in the \textsl{corpus} of algorithms for computing power residue symbols.
Expand
Laura Blackstone, Seny Kamara, Tarik Moataz
ePrint Report ePrint Report
Encrypted search algorithms (ESA) are cryptographic algorithms that support search over encrypted data. ESAs can be designed with various primitives including searchable/structured symmetric encryption (SSE/STE) and oblivious RAM (ORAM). Leakage abuse attacks attempt to recover client queries using knowledge of the client’s data. An important parameter for any leakage-abuse attack is its known-data rate; that is, the fraction of client data that must be known to the adversary.

In this work, we revisit leakage abuse attacks in several ways. We first highlight some practical limitations and assumptions underlying the well-known IKK (Islam et al. NDSS ’12) and Count (Cash et al., CCS ’15) attacks. We then design four new leakage-abuse attacks that rely on much weaker assumptions. Three of these attacks are volumetric in the sense that they only exploit leakage related to document sizes. In particular, this means that they work not only on SSE/STE-based ESAs but also against ORAM-based solutions. We also introduce two volumetric injection attack which use adversarial file additions to recover queries even from ORAM-based solutions. As far as we know, these are the first attacks of their kind.

We evaluated all our attacks empirically and considered many experimental settings including different data collections, query selectivities, known-data rates, query space size and composition. From our experiments, we observed that the only setting that resulted in reasonable recovery rates under practical assumptions was the case of high-selectivity queries with a leakage profile that includes the response identity pattern (i.e., the identifiers of the matching documents) and the volume pattern (i.e., the size of the matching documents). All other attack scenarios either failed or relied on unrealistic assumptions (e.g., very high known-data rates). For this specific setting, we propose several suggestions and countermeasures including the use of schemes like PBS (Kamara et al, CRYPTO ’18), VLH/AVLH (Kamara and Moataz, Eurocrypt ’19 ), or the use of padding techniques like the ones recently proposed by Bost and Fouque (Bost and Fouque, IACR ePrint 2017/1060).
Expand
Borja Gómez
ePrint Report ePrint Report
Asymmetric schemes are moving towards a new series of cryptosystems based on known open problems that until the day guarantee security from the point that are not solvable under determined properties. In this paper you can read a novel research done mostly on the field of Multivariate Public Key Cryptography that focus the interest on sharing a pre-master key between Alice and Bob using quadratic multivariate polynomials as the public key. What does this scheme somehow special is that it uses a private construction involving polynomial factorization that allows Alice to recover the secret sent by Bob.
Expand
Giuseppe Ateniese, Danilo Francati, Bernardo Magri, Daniele Venturi
ePrint Report ePrint Report
We seek constructions of general-purpose immunizers that take arbitrary cryptographic primitives, and transform them into ones that withstand a powerful “malicious but proud” adversary, who attempts to break security by possibly subverting the implementation of all algorithms (including the immunizer itself!), while trying not to be detected. This question is motivated by the recent evidence of cryptographic schemes being intentionally weakened, or designed together with hidden backdoors, e.g., with the scope of mass surveillance. Our main result is a subversion-secure immunizer in the plain model, that works for a fairly large class of deterministic primitives, i.e. cryptoschemes where a secret (but tamperable) random source is used to generate the keys and the public parameters, whereas all other algorithms are deterministic. The immunizer relies on an additional independent source of public randomness, which is used to sample a public seed. Assuming the public source is untamperable, and that the subversion of the algorithms is chosen independently of the seed, we can instantiate our immunizer from any one-way function. In case the subversion is allowed to depend on the seed, and the public source is still untamperable, we obtain an instantiation from collision-resistant hash functions. In the more challenging scenario where the public source is also tamperable, we additionally need to assume that the initial cryptographic primitive has sub-exponential security. Previous work in the area only obtained subversion-secure immunization for very restricted classes of primitives, often in weaker models of subversion and relying on random oracles, or by leveraging a higher number of independent random sources.
Expand
Mingming Wang, Qianhong Wu
ePrint Report ePrint Report
Blockchain brings dawn to decentralized applications which coordinate correct computations without a prior trust. However, existing scalable on-chain frameworks are incompetent in dealing with intensive validation. On the one hand, duplicated execution pattern leads to limited throughput and unacceptable expenses. On the other hand, there lack fair and secure incentive mechanisms allocating rewards according to the actual workload of validators, thus deriving bad dilemmas among rational participants and inducing effective attacks from shrewd adversaries. While most solutions rely on off-chain patterns to sidestep the shackles, it further introduces unexpected issues in applicability, fairness and brittle dependency on interactive cooperation. The intrinsic bottleneck of backbone has never been drastically broken.

This work presents Lever, the first scalable on-chain framework which supports intensive validation, meanwhile achieves validity, incentive compatibility and cost-efficiency tolerance of f<n/4 Byzantine participants. Lever firstly integrates the evaluation of complexity into the correctness of transaction, thoroughly decoupling intensive validation from regular Byzantine consensus. Significant scalability is then achieved by launching few rounds of novel validation-challenge game between potential adversaries and rational stakeholders; compelling incentive mechanism effectively transfers deposits of adversary to specialized rewards for honest validators, therefore allows the user to lever sufficient endorsement for verification with minimum cost. Combined with game-theoretic insights, a backstop protocol is designed to ensure finality and validity of the framework, breaking through the famous Verifier’s Dilemma. Finally, we streamline Lever under the efficient architecture of sharding, which jointly shows robust to conceivable attacks on validation and performs outstanding ability to purify Byzantine participants. Experimental results show that Lever vastly improves the throughput and reduces expenses of intensive validation with slight compromise in latency.
Expand
Laura Luzzi, Roope Vehkalahti, Cong Ling
ePrint Report ePrint Report
Despite several works on secrecy coding for fading and MIMO wiretap channels from an error probability perspective, the construction of information-theoretically secure codes over such channels remains an open problem. In this paper, we consider a fading wiretap channel model where the transmitter has only partial statistical channel state information. Our channel model includes static channels, i.i.d. block fading channels, and ergodic stationary fading with fast decay of large deviations for the eavesdropper's channel.

We extend the flatness factor criterion from the Gaussian wiretap channel to fading and MIMO wiretap channels, and establish a simple design criterion where the normalized product distance / minimum determinant of the lattice and its dual should be maximized simultaneously.

Moreover, we propose concrete lattice codes satisfying this design criterion, which are built from algebraic number fields with constant root discriminant in the single-antenna case, and from division algebras centered at such number fields in the multiple-antenna case.
Expand
Iggy van Hoof
ePrint Report ePrint Report
Multiplication is an essential step in a lot of calculations. In this paper we look at multiplication of 2 binary polynomials of degree at most $n-1$, modulo an irreducible polynomial of degree $n$ with $2n$ input and $n$ output qubits, without ancillary qubits, assuming no errors. With straightforward schoolbook methods this would result in a quadratic number of Toffoli gates and a linear number of CNOT gates. This paper introduces a new algorithm that uses the same space, but by utilizing space-efficient variants of Karatsuba multiplication methods it requires only $O(n^{\log_2(3)})$ Toffoli gates at the cost of a higher CNOT gate count: theoretically up to $O(n^2)$ but in examples the CNOT gate count looks a lot better.
Expand
Antonio Campello, Cong Ling, Jean-Claude Belfiore
ePrint Report ePrint Report
We consider compound multi-input multi-output (MIMO) wiretap channels where minimal channel state information at the transmitter (CSIT) is assumed. Code construction is given for the special case of isotropic mutual information, which serves as a conservative strategy for general cases. Using the flatness factor for MIMO channels, we propose lattice codes universally achieving the secrecy capacity of compound MIMO wiretap channels up to a constant gap (measured in nats) that is equal to the number of transmit antennas. The proposed approach improves upon existing works on secrecy coding for MIMO wiretap channels from an error probability perspective, and establishes information theoretic security (in fact semantic security). We also give an algebraic construction to reduce the code design complexity, as well as the decoding complexity of the legitimate receiver. Thanks to the algebraic structures of number fields and division algebras, our code construction for compound MIMO wiretap channels can be reduced to that for Gaussian wiretap channels, up to some additional gap to secrecy capacity.
Expand

09 October 2019

Real World Crypto Real World Crypto
The Real World Crypto Symposium (RWC) 2019 will be held in New York, USA, January 8-10, 2020.

The conference webpage: https://rwc.iacr.org/2020/index.html

Registration information: https://rwc.iacr.org/2020/registration.html

Expand
TCC TCC
TCC 2019, the 17th Theory of Cryptography Conference will be held in Nuremberg, Germany, December 1-5, 2019.

The conference webpage: https://tcc.iacr.org/2019/index.html

Registration
TCC 2019 registrations are now open at https://tcc.iacr.org/2019/registration.html. The early registration deadline ends on November 3, 2019.

Accommodation
There is a number of hotels listed under https://tcc.iacr.org/2019/accommodations.html.
Note that the provided rates will no longer be valid after 17 October. Later bookings will be considerably more expensive due to Nuremberg Christkindlesmarkt which also opens in December.
Expand

08 October 2019

Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, Yu Yu
ePrint Report ePrint Report
We study the concrete security of high-performance implementations of half-gates garbling, which all rely on (hardware-accelerated)~AES. We find that current instantiations using $k$-bit wire labels can be completely broken---in the sense that the circuit evaluator learns all the inputs of the circuit garbler---in time $O(2^k/C)$, where $C$ is the total number of (non-free) gates that are garbled, possibly across multiple independent executions. The attack can be applied to existing circuit-garbling libraries using $k=80$ when $C \approx 10^9$, and would require 267 machine-months and cost about USD 3500 to implement on the Google Cloud Platform. Since the attack can be entirely parallelized, the attack could be carried out in about a month using $\approx 250$ machines.

With this as our motivation, we seek a way to instantiate the hash function in the half-gates scheme so as to achieve better concrete security. We present a construction based on AES that achieves optimal security in the single-instance setting (when only a single circuit is garbled). We also show how to modify the half-gates scheme so that its concrete security does not degrade in the multi-instance setting. Our modified scheme is as efficient as prior work in networks with up to 2 Gbps bandwidth.
Expand
Nabil Alkeilani Alkadri, Rachid El Bansarkhani, Johannes Buchmann
ePrint Report ePrint Report
Blind signatures constitute basic cryptographic ingredients for privacy-preserving applications such as anonymous credentials, e-voting, and Bitcoin. Despite the great variety of cryptographic applications, blind signatures also found their way in real-world scenarios. Due to the expected progress in cryptanalysis using quantum computers, it remains an important research question to find practical and secure alternatives to systems based on classical security assumptions that are not future-proof. In this work we present $\mathsf{BLAZE}$, a new practical blind signature scheme from lattice assumptions. With respect to all relevant efficiency metrics $\mathsf{BLAZE}$ is much more efficient than all previous blind signature schemes based on assumptions conjectured to withstand quantum computer attacks. In particular, $\mathsf{BLAZE}$ considerably improves upon the first (and currently only secure) lattice-based proposal introduced by Rückert at ASIACRYPT 2010 ($\mathsf{RBS}$). For instance, at 128 bits of security signatures are as small as 6.6 KB, which represents an improvement factor of 13.5 compared to $\mathsf{RBS}$, 2.7 compared to all previous candidates, and an expansion factor of 2.5 compared to the NIST PQC submission $\mathsf{Dilithium}$. We also give a highly optimized implementation, which demonstrates the efficiency of $\mathsf{BLAZE}$ to be deployed in practical applications. In particular, generating a blind signature takes just 18 ms, which represents a factor improvement of 15 compared to $\mathsf{RBS}$. The running times for key generation and verification are in the same order as state-of-the-art regular signature schemes, however several orders of magnitudes faster than $\mathsf{RBS}$.
Expand
Peter Schwabe, Daan Sprenkels
ePrint Report ePrint Report
This paper presents optimized software for constant-time variable-base scalar multiplication on prime-order Weierstraß curves using the complete addition and doubling formulas presented by Renes, Costello, and Batina in 2016. Our software targets three different microarchitectures: Intel Sandy Bridge, Intel Haswell, and ARM Cortex-M4. We use a 255-bit elliptic curve over $\mathbb{F}_{2^{255}-19}$ that was proposed by Barreto in 2017. The reason for choosing this curve in our software is that it allows most meaningful comparison of our results with optimized software for Curve25519. The goal of this comparison is to get an understanding of the cost of using cofactor-one curves with complete formulas when compared to widely used Montgomery (or twisted Edwards) curves that inherently have a non-trivial cofactor.
Expand
Nicolas Bordes, Pierre Karpman
ePrint Report ePrint Report
We revisit the high-order masking schemes for private multiplication introduced by Belaïd et al. at EUROCRYPT 2016, and the matrix model for non-interference (NI) security that they develop in their follow-up work of CRYPTO 2017. This leads to two main results. 1) We generalise the theorems of CRYPTO 2017 so as to be able to apply them to masking schemes over any finite field --- in particular GF(2) --- and to be able to analyse the strong non-interference (SNI) security notion. This leads to an efficient algorithm that allows us to computationally check the (S)NI security of binary schemes up to order d=11. 2) We propose new SNI and NI masking gadgets for multiplication over GF(2) (and any extension thereof) up to order 9 and 11 that improve the randomness complexity of the schemes of EUROCRYPT 2016 and of Ishai, Sahai and Wagner (CRYPTO 2003) respectively. A natural generalisation of the NI schemes is also conjectured to be secure at any order.
Expand
Chao Liu, Zhongxiang Zheng, Keting Jia, Limin Tao
ePrint Report ePrint Report
Authenticated encryption (AE) is very suitable for a resources constrained environment for it needs less computational costs and AE has become one of the important technologies of modern communication security. Identity concealment is one of research focuses in design and analysis of current secure transport protocols (such as TLS1.3 and Google's QUIC). In this paper, we present a provably secure identity-concealed authenticated encryption in the public-key setting over ideal lattices, referred to as RLWE-ICAE. Our scheme can be regarded as a parallel extension of higncryption scheme proposed by Zhao (CCS 2016), but in the lattice-based setting. RLWE-ICAE can be viewed as a monolithic integration of public-key encryption, key agreement over ideal lattices, identity concealment and digital signature. The security of RLWE-ICAE is directly relied on the Ring Learning with Errors (RLWE) assumption. Two concrete choices of parameters are provided in the end.
Expand
Marc Fyrbiak, Sebastian Wallat, Jonathan Déchelotte, Nils Albartus, Sinan Böcker, Russell Tessier, Christof Paar
ePrint Report ePrint Report
In today’s Integrated Circuit (IC) production chains, a designer’s valuable Intellectual Property (IP) is transparent to diverse stakeholders and thus inevitably prone to piracy. To protect against this threat, numerous defenses based on the obfuscation of a circuit’s control path, i.e. Finite State Machine (FSM), have been proposed and are commonly believed to be secure. However, the security of these sequential obfuscation schemes is doubtful since realistic capabilities of reverse engineering and subsequent manipulation are commonly neglected in the security analysis. The contribution of our work is threefold: First, we demonstrate how high-level control path information can be automatically extracted from third-party, gate-level netlists. To this end, we extend state-of-the-art reverse engineering algorithms to deal with Field Programmable Gate Array (FPGA) gate-level netlists equipped with FSM obfuscation. Second, on the basis of realistic reverse engineering capabilities we carefully review the security of state-of-the-art FSM obfuscation schemes. We reveal several generic strategies that bypass allegedly secure FSM obfuscation schemes and we practically demonstrate our attacks for a several of hardware designs, including cryptographic IP cores. Third, we present the design and implementation of Hardware Nanomites, a novel obfuscation scheme based on partial dynamic reconfiguration that generically mitigates existing algorithmic reverse engineering.
Expand

07 October 2019

Karim Baghery
ePrint Report ePrint Report
In ASIACRYPT 2016, Bellare, Fuchsbauer, and Scafuro studied the security of non-interactive zero-knowledge (NIZK) arguments in the face of parameter subversion. They showed that achieving subversion soundness (soundness without trusting to the third party) and standard zero-knowledge is impossible at the same time. On the positive side, in the best case, they showed that one can achieve subversion zero-knowledge (zero-knowledge without trusting to the third party) and soundness at the same time. In this paper, we show that one can amplify their best positive result and construct NIZK arguments that can achieve subversion zero-knowledge and $\textit{simulation}$ (knowledge) soundness at the same time. Simulation (knowledge) soundness is a stronger notion in comparison with (knowledge) soundness, as it also guarantees non-malleability of proofs. Such a stronger security guarantee is a must in practical systems. To prove the result, we show that given a NIZK argument that achieves Sub-ZK and (knowledge) soundness, one can use an OR-based construction to define a new language and build a NIZK argument that will guarantee Sub-ZK and $\textit{simulation}$ (knowledge) soundness at the same time. We instantiate the construction with the state-of-the-art zk-SNARK proposed by Groth [Eurocrypt 2016] and obtain an efficient SNARK that guarantees Sub-ZK and simulation knowledge soundness.
Expand
Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, John M. Schanck
ePrint Report ePrint Report
Quantum variants of lattice sieve algorithms are often used to assess the security of lattice based cryptographic constructions. In this work we provide a heuristic, non-asymptotic, analysis of the cost of several algorithms for near neighbour search on high dimensional spheres. These algorithms are used in lattice sieves. We design quantum circuits for near neighbour algorithms and provide software that numerically optimises algorithm parameters according to various cost metrics. Using this software we estimate the cost of classical and quantum near neighbour search on spheres. We find that quantum search may provide a small speedup in dimensions of cryptanalytic interest, but only under exceedingly optimistic physical and algorithmic assumptions.
Expand
Morten Øygarden, Patrick Felke, Håvard Raddum, Carlos Cid
ePrint Report ePrint Report
EFLASH is a multivariate public-key encryption scheme proposed by Cartor and Smith-Tone at SAC 2018. In this paper we investigate the hardness of solving the particular equation systems arising from EFLASH, and show that the solving degree for these types of systems is much lower than estimated by the authors. We show that a Gröbner basis algorithm will produce degree fall polynomials at a low degree for EFLASH systems. In particular we are able to accurately predict the number of these polynomials occurring at step degrees 3 and 4 in our attacks. We performed several experiments using the computer algebra system MAGMA, which indicate that the solving degree is at most one higher than the one where degree fall polynomials occur; moreover, our experiments show that whenever the predicted number of degree fall polynomials is positive, it is exact. Our conclusion is that EFLASH does not offer the level of security claimed by the designers. In particular, we estimate that the EFLASH version with 80-bit security parameters offers at most 69 bits of security.
Expand
Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, Peter Scholl
ePrint Report ePrint Report
We consider the problem of securely generating useful instances of two-party correlations, such as many independent copies of a random oblivious transfer (OT) correlation, using a small amount of communication. This problem is motivated by the goal of secure computation with silent preprocessing, where a low-communication input-independent setup, followed by local ("silent") computation, enables a lightweight "non-cryptographic" online phase once the inputs are known.

Recent works of Boyle et al. (CCS 2018, Crypto 2019) achieve this goal with good concrete efficiency for useful kinds of two-party correlations, including OT correlations, under different variants of the Learning Parity with Noise (LPN) assumption, and using a small number of "base" oblivious transfers. The protocols of Boyle et al. have several limitations. First, they require a large number of communication rounds. Second, they are only secure against semi-honest parties. Finally, their concrete efficiency estimates are not backed by an actual implementation. In this work we address these limitations, making three main contributions:

- Eliminating interaction. Under the same assumption, we obtain the first concretely efficient 2-round protocols for generating useful correlations, including OT correlations, in the semi-honest security model. This implies the first efficient 2-round OT extension protocol of any kind and, more generally, protocols for non-interactive secure computation (NISC) that are concretely efficient and have the silent preprocessing feature.

- Malicious security. We provide security against malicious parties (in the random oracle model) without additional interaction and with only a modest concrete overhead; prior to our work, no similar protocols were known with any number of rounds.

- Implementation. Finally, we implemented, optimized, and benchmarked our 2-round OT extension protocol, demonstrating that it offers a more attractive alternative to the OT extension protocol of Ishai et al. (Crypto 2003) in many realistic settings.
Expand
◄ Previous Next ►