IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
11 January 2019
Vancouver, Canada, 3 June - 7 June 2019
Event date: 3 June to 7 June 2019
Submission deadline: 29 April 2019
Submission deadline: 29 April 2019
09 January 2019
Auckland, New Zealand, 8 July 2019
Event date: 8 July 2019
Submission deadline: 28 January 2019
Notification: 8 April 2019
Submission deadline: 28 January 2019
Notification: 8 April 2019
Montr�al, Canada, 26 August - 30 August 2019
Event date: 26 August to 30 August 2019
Joachim Breitner, Nadia Heninger
In this paper, we compute hundreds of Bitcoin private keys and dozens of Ethereum, Ripple, SSH, and HTTPS private keys by carrying out cryptanalytic attacks against digital signatures contained in public blockchains and Internet-wide scans. The ECDSA signature algorithm requires the generation of a per-message secret nonce. This nonce must be generated perfectly uniformly, or else an attacker can exploit the nonce biases to compute the long-term signing key. We use a lattice-based algorithm for solving the hidden number problem to efficiently compute private ECDSA keys that were used with biased signature nonces due to multiple apparent implementation vulnerabilities.
The 2019 Levchin Prize has been awarded to:
This year's prize was awarded at the Real World Crypto symposium in San Jose, California, USA.
More information about the Levchin Prize and the awardees can be found at levchinprize.com
- Eric Rescorla, for sustained contributions to the standardization of security protocols, most recently in the development and standardization of TLS 1.3; and
- Mihir Bellare, for outstanding contributions to the design and analysis of real-world cryptography, including the development of the random oracle model, modes-of-operation, HMAC, and formal models of key exchange.
This year's prize was awarded at the Real World Crypto symposium in San Jose, California, USA.
More information about the Levchin Prize and the awardees can be found at levchinprize.com
08 January 2019
Anthony Demeri, Thomas Conroy, Alex Nolan, William Diehl
Secure block cipher design is a complex discipline which combines mathematics, engineering, and computer science. In order to develop cryptographers who are grounded in all three disciplines, it is necessary to undertake synergistic research as early as possible in technical curricula, particularly at the undergraduate university level. In this work, students are presented with a new block cipher, which is designed to offer moderate security while providing engineering and analysis challenges suitable for the senior undergraduate level. The BIG (Block) (Instructional, Generic) cipher is analyzed for vulnerability to linear cryptanalysis. Further, the cipher is implemented using the Nios II microprocessor and two configurations of memory-mapped hardware accelerators, in the Cyclone V FPGA on the Terasic DE1 System-on-chip (SoC). Three distinct implementations are realized: 1) Purely software (optimized for latency), 2) Purely hardware (optimized for area), and 3) A hardware-software codesign (optimized for throughput-to-area ratio). All three implementations are evaluated in terms of latency (encryption and decryption), throughput (Mbps), area (ALMs), and throughput-to-area (TP/A) ratio (Mbps/ALM); all metrics account for a fully functional Nios II, 8 kilobytes of on-chip RAM, Avalon interconnect, benchmark timer, and any hardware accelerators. In terms of security, we demonstrate recovery of a relationship among 12 key bits using as few as 16,000 plaintext/ciphertext pairs in a 6-round reduced round attack and reveal a diffusion rate of only 43.3 percent after 12 rounds. The implementation results show that the hardware-software codesign achieves a 67x speed-up and 37x increase in TP/A ratio over the software implementation, and 5x speed-up and 5x increase in TP/A ratio compared to the hardware implementation.
Ilya Aldanov
CryptoNote protocol proved to be very popular among cryptocurrency startups. We propose several features to extend the basic protocol. Among them are Hybrid Mining (a different mining scheme preventing a straightforward 51% attack), Slow Emission (an emission curve better suited for the real-world adoption), Return Addresses (transaction-specic addresses anonymously linking transactions to their originators), Tiny Addresses (short numerical addresses easy to remember and relay). For breivity, we call these features CryptoNote+.
Michel Abdalla, Fabrice Benhamouda, Markulf Kolhweiss, Hendrik Waldner
Multi-client functional encryption (MCFE) is a more flexible variant of functional encryption whose functional decryption involves multiple ciphertexts from different parties. Each party holds a different secret key $\mathsf{sk}_i$ and can independently and adaptively be corrupted by the adversary. We present two compilers for MCFE schemes for the inner-product functionality, both of which support encryption labels. Our first compiler transforms any scheme with a special key-derivation property into a decentralized scheme, as defined by Chotard et al. (ASIACRYPT 2018), thus allowing for a simple distributed way of generating functional decryption keys without a trusted party. Our second compiler allows to lift a unnatural restriction present in existing (decentralized) MCFE schemes,which requires the adversary to ask for a ciphertext from each party. We apply our compilers to the works of Abdalla et al. (CRYPTO 2018) and Chotard et al. (ASIACRYPT 2018) to obtain schemes with hitherto unachieved properties. From Abdalla et al., we obtain instantiations of DMCFE schemes in the standard model (from DDH, Paillier, or LWE) but without labels. From Chotard et al., we obtain a DMCFE scheme with labels still in the random oracle model, but without pairings.
Chunning Zhou, Wentao Zhang, Tianyou Ding, Zejun Xiang
In recent years, Mixed Integer Linear Programming (MILP) has been widely used in cryptanalysis of symmetric-key primitives. For differential and linear cryptanalysis, MILP can be used to solve the two problems: calculation of the minimum number of differential/linear active S-boxes, and search for the best differential/linear characteristics. There are already numerous papers published in this area which either find differential characteristics with good probabilities or ones with small numbers of active S-boxes. However, the efficiency is not satisfactory enough for many symmetric-key primitives. In this paper, we will greatly improve the efficiency of the search algorithms for both the two problems based on MILP. Solving the problems of the calculation of the minimum number of differential/linear active S-boxes and the search for the best differential/linear characteristics can be equivalent to solving an MILP model whose feasible region is the set of all possible differential/linear characteristics. However, searching the whole feasible region is inefficient and high-probability differential/linear characteristics are likely to appear on the smaller feasible region with a low number of active S-boxes at some round. Inspired by the idea of divide-and-conquer approach, we divide the whole feasible region into smaller ones and separately search them. We apply our method to 5 lightweight block ciphers: PRESENT, GIFT-64, RECTANGLE, LBLOCK and TWINE. For each cipher, we obtain better results than the best-known ones. For the calculation of the minimum number of differential active S-boxes, we can reach 31-round PRESENT, 28-round GIFT-64 and 17-round RECTANGLE respectively. For the search for the best differential characteristics, we can reach 23, 14, 15, 21 and 17 rounds for the five ciphers respectively. Based on the duality between the differential cryptanalysis and the linear cryptanalysis, we leave the case for linear cryptanalysis in our future work.
Yunhua Wen, Shengli Liu, Dawu Gu
Robustly reusable Fuzzy Extractor (rrFE) considers reusability and robustness simultaneously.
We present two approaches to the generic construction of rrFE. Both of approaches make use of a secure sketch and universal hash functions. The first approach also employs a special pseudo-random function (PRF), namely unique-input key-shift (ui-ks) secure PRF, and the second uses a key-shift secure auxiliary-input authenticated encryption (AIAE). The ui-ks security of PRF (resp. key-shift security of AIAE), together with the homomorphic properties of secure sketch and universal hash function, guarantees the reusability and robustness of rrFE. Meanwhile, we show two instantiations of the two approaches respectively. The first instantiation results in the first rrFE from the LWE assumption, while the second instantiation results in the first rrFE from the DDH assumption over non-pairing groups.
Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari Juels, Dawn Song
We introduce CHURP (CHUrn-Robust Proactive secret sharing). CHURP enables secure secret-sharing in dynamic settings, where the committee of nodes storing a secret changes over time. Designed for blockchains, CHURP has lower communication complexity than previous schemes: $O(n)$ on-chain and $O(n^2)$ off-chain in the optimistic case of no node failures.
CHURP includes several technical innovations: An efficient new proactivization scheme of independent interest, a technique (using asymmetric bivariate polynomials) for efficiently changing secret-sharing thresholds, and a hedge against setup failures in an efficient polynomial commitment scheme. We also introduce a general new technique for inexpensive off-chain communication across the peer-to-peer networks of permissionless blockchains.
We formally prove the security of CHURP, report on an implementation, and present performance measurements.
CHURP includes several technical innovations: An efficient new proactivization scheme of independent interest, a technique (using asymmetric bivariate polynomials) for efficiently changing secret-sharing thresholds, and a hedge against setup failures in an efficient polynomial commitment scheme. We also introduce a general new technique for inexpensive off-chain communication across the peer-to-peer networks of permissionless blockchains.
We formally prove the security of CHURP, report on an implementation, and present performance measurements.
Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, Joanne Woodage
Message franking enables cryptographically verifiable reporting of abusive content in end-to-end encrypted messaging. Grubbs, Lu, and Ristenpart recently formalized the needed underlying
primitive, what they call compactly committing authenticated encryption (AE), and analyzed the security of a number of approaches. But all known secure schemes are still slow compared to the fastest standard AE schemes. For this reason Facebook Messenger uses AES-GCM for franking of attachments such as images or videos.
We show how to break Facebooks attachment franking scheme: a malicious user can send an objectionable image to a recipient but that recipient cannot report it as abuse. The core problem stems from use of fast but non-committing AE, and so we build the fastest compactly committing AE schemes to date. To do so we introduce a new primitive, called encryptment, which captures the essential properties needed. We prove that, unfortunately, schemes with performance profile similar to AES-GCM wont work. Instead, we show how to efficiently transform Merkle-Damgärd-style hash functions into secure encryptments, and how to efficiently build compactly committing AE from encryptment. Ultimately our main construction allows franking using just a single computation of SHA-256 or SHA-3. Encryptment proves useful for a variety of other applications, such as remotely keyed AE and concealments, and our results imply the first single-pass schemes in these settings as well.
Thomas Pornin, Thomas Prest
NTRU lattices are a class of polynomial rings which allow for compact and efficient representations of the lattice basis, thereby offering very good performance characteristics for the asymmetric algorithms that use them. Signature algorithms based on NTRU lattices have fast signature generation and verification, and relatively small signatures, public keys and private keys.
A few lattice-based cryptographic schemes entail, generally during the key generation, solving the NTRU equation: $$ f G - g F = q \mod x^n + 1 $$ Here $f$ and $g$ are fixed, the goal is to compute solutions $F$ and $G$ to the equation, and all the polynomials are in $\mathbb{Z}[x]/(x^n + 1)$. The existing methods for solving this equation are quite cumbersome: their time and space complexities are at least cubic and quadratic in the dimension $n$, and for typical parameters they therefore require several megabytes of RAM and take more than a second on a typical laptop, precluding onboard key generation in embedded systems such as smart cards.
In this work, we present two new algorithms for solving the NTRU equation. Both algorithms make a repeated use of the field norm in tower of fields; it allows them to be faster and more compact than existing algorithms by factors $\tilde O(n)$. For lattice-based schemes considered in practice, this reduces both the computation time and RAM usage by factors at least 100, making key pair generation within range of smart card abilities.
A few lattice-based cryptographic schemes entail, generally during the key generation, solving the NTRU equation: $$ f G - g F = q \mod x^n + 1 $$ Here $f$ and $g$ are fixed, the goal is to compute solutions $F$ and $G$ to the equation, and all the polynomials are in $\mathbb{Z}[x]/(x^n + 1)$. The existing methods for solving this equation are quite cumbersome: their time and space complexities are at least cubic and quadratic in the dimension $n$, and for typical parameters they therefore require several megabytes of RAM and take more than a second on a typical laptop, precluding onboard key generation in embedded systems such as smart cards.
In this work, we present two new algorithms for solving the NTRU equation. Both algorithms make a repeated use of the field norm in tower of fields; it allows them to be faster and more compact than existing algorithms by factors $\tilde O(n)$. For lattice-based schemes considered in practice, this reduces both the computation time and RAM usage by factors at least 100, making key pair generation within range of smart card abilities.
Gaurav Panwar, Satyajayant Misra, Roopa Vishwanathan
Distributed credit networks, such as Ripple and Stellar, are becoming popular as an alternative means for financial transactions. However, the current designs do not preserve user privacy or are not truly decentralized. In this paper, we explore the creation of a distributed credit network that preserves user and transaction privacy and unlinkability.
We propose BlAnC, a novel, fully decentralized blockchain-based credit network where credit transfer between a sender-receiver pair happens on demand. In BlAnC, multiple concurrent transactions can occur seamlessly, and malicious network actors that do not follow the protocols and/or disrupt operations can be identified efficiently. We perform security analysis of our proposed protocols in the universal composability framework to demonstrate its strength,
and discuss how our network handles operational dynamics. We also present preliminary experiments and scalability analyses.
Changhai Ou, Siew-Kei Lam
Recovering keys efficiently from far beyond exhaustible candidate spaces is a meaningful but very challenging topic in Side-Channel Attacks (SCA). Recent methods often utilize collision optimizations to reduce the key candidate space so that exhaustive search methods can be feasibly applied for key recovery. However, the current collision optimization methods can only utilize information of a small number of collisions, which limits the number of wrong key candidates that can be removed. In addition, their application is restricted to situations where only small thresholds can be applied. As such, the existing methods are not feasible for recovering the full key if sub-keys and collision values are located in much deeper spaces as we will discuss in this paper. To overcome these problems, we propose Full Collision Attack (FCA). Compared to the existing methods, FCA makes use of all possible collisions between any two sub-keys and removes a larger number of wrong key candidates, thus enabling key recovery in much deeper spaces. Moreover, we find that the collision values that fall beyond the threshold usually occurs only for a few sub-keys. Based on this finding, we propose the Rotational Error Tolerant FCA (RET-FCA) to significantly reduce the candidate space of collisions. Our results show that RET-FCA performs favourably when the collision values fall in the intractable space of FCA.
A Proof of the Beierle-Kranz-Leander's Conjecture related to Lightweight Multiplication in $F_{2^n}$
Sihem Mesnager, Kwang Ho Kim, Dujin Jo, Junyop Choe, Munhyon Han, Dok Nam Lee
Lightweight cryptography is an important tool for building strong security solutions for pervasive devices with limited resources. Due to the stringent cost constraints inherent in extremely large applications, the efficient implementation of cryptographic hardware and software algorithms is of utmost importance to realize the vision of generalized computing.
In CRYPTO 2016, Beierle, Kranz and Leander have considered lightweight multiplication in ${F}_{2^n}$. Specifically, they have considered the fundamental question of optimizing finite field multiplications with one fixed element and investigated which field representation, that is which choice of basis, allows for an optimal implementation. They have left open a conjecture related to two XOR-count. Using the theory of linear algebra, we prove in the present paper that their conjecture is correct. Consequently, this proved conjecture can be used as a reference for further developing and implementing cryptography algorithms in lightweight devices.
In CRYPTO 2016, Beierle, Kranz and Leander have considered lightweight multiplication in ${F}_{2^n}$. Specifically, they have considered the fundamental question of optimizing finite field multiplications with one fixed element and investigated which field representation, that is which choice of basis, allows for an optimal implementation. They have left open a conjecture related to two XOR-count. Using the theory of linear algebra, we prove in the present paper that their conjecture is correct. Consequently, this proved conjecture can be used as a reference for further developing and implementing cryptography algorithms in lightweight devices.
Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, Kenneth G. Paterson
We show that the problem of reconstructing encrypted databases from access pattern leakage is closely related to statistical learning theory. This new viewpoint enables us to develop broader attacks that are supported by streamlined performance analyses.
As an introduction to this viewpoint, we first present a general reduction from reconstruction with known queries to PAC learning. Then, we directly address the problem of $\epsilon$-approximate database reconstruction ($\epsilon$-ADR) from range query leakage, giving attacks whose query cost scales only with the relative error $\epsilon$, and is independent of the size of the database, or the number $N$ of possible values of data items. This already goes significantly beyond the state of the art for such attacks, as represented by Kellaris et al. (ACM CCS 2016) and Lacharit\'{e} et al. (IEEE S&P 2018).
We also study the new problem of $\epsilon$-approximate order reconstruction ($\epsilon$-AOR), where the adversary is tasked with reconstructing the order of records, except for records whose values are approximately equal. We show that as few as ${\mathcal{O}}(\epsilon^{-1} \log \epsilon^{-1})$ uniformly random range queries suffice. Our analysis relies on an application of learning theory to PQ-trees, special data structures tuned to compactly record certain ordering constraints.
We then show that when an auxiliary distribution is available, $\epsilon$-AOR can be enhanced to achieve $\epsilon$-ADR; using real data, we show that devastatingly small numbers of queries are needed to attain very accurate database reconstruction.
Finally, we generalize from ranges to consider what learning theory tells us about the impact of access pattern leakage for other classes of queries, focusing on prefix and suffix queries. We illustrate this with both concrete attacks for prefix queries and with a general lower bound for all query classes.
As an introduction to this viewpoint, we first present a general reduction from reconstruction with known queries to PAC learning. Then, we directly address the problem of $\epsilon$-approximate database reconstruction ($\epsilon$-ADR) from range query leakage, giving attacks whose query cost scales only with the relative error $\epsilon$, and is independent of the size of the database, or the number $N$ of possible values of data items. This already goes significantly beyond the state of the art for such attacks, as represented by Kellaris et al. (ACM CCS 2016) and Lacharit\'{e} et al. (IEEE S&P 2018).
We also study the new problem of $\epsilon$-approximate order reconstruction ($\epsilon$-AOR), where the adversary is tasked with reconstructing the order of records, except for records whose values are approximately equal. We show that as few as ${\mathcal{O}}(\epsilon^{-1} \log \epsilon^{-1})$ uniformly random range queries suffice. Our analysis relies on an application of learning theory to PQ-trees, special data structures tuned to compactly record certain ordering constraints.
We then show that when an auxiliary distribution is available, $\epsilon$-AOR can be enhanced to achieve $\epsilon$-ADR; using real data, we show that devastatingly small numbers of queries are needed to attain very accurate database reconstruction.
Finally, we generalize from ranges to consider what learning theory tells us about the impact of access pattern leakage for other classes of queries, focusing on prefix and suffix queries. We illustrate this with both concrete attacks for prefix queries and with a general lower bound for all query classes.
Rodrigo Abarzúa, Claudio Valencia, Julio López
The main objective of the Internet of Things is to interconnect everything around us to obtain information which was unavailable to us before, thus enabling us to make better decisions. This interconnection of things involves security issues for any Internet of Things key technology. Here we focus on elliptic curve cryptography (ECC) for embedded devices, which offers a high degree of security, compared to other encryption mechanisms. However, ECC also has security issues, such as Side-Channel Attacks (SCA), which are a growing threat in the implementation of cryptographic devices. This paper analyze the state-of-the-art of several proposals of algorithmic countermeasures to prevent passive SCA on ECC defined over prime fields. This work evaluates the trade-offs between security and the performance of side-channel attack countermeasures for scalar multiplication algorithms without pre-computation, i.e. for variable base point.
Although a number of results are required to study the state-of-the-art of side-channel attack in elliptic curve cryptosystems, the interest of this work is to present explicit solutions that may be used for the future implementation of security mechanisms suitable for embedded devices applied to Internet of Things. In addition security problems for the countermeasures are also analyzed.
Qian Guo, Thomas Johansson, Erik Mårtensson, Paul Stankovski Wagner
The Learning with Errors problem (LWE) has become a central topic in recent cryptographic research. In this paper, we present a new solving algorithm combining important ideas from previous work on improving the Blum-Kalai-Wasserman (BKW) algorithm and ideas from sieving in lattices. The new algorithm is analyzed and demonstrates an improved asymptotic performance. For the Regev parameters $q=n^2$ and noise level $\sigma = n^{1.5}/(\sqrt{2\pi}\log_{2}^{2}n)$, the asymptotic complexity is $2^{0.893n}$ in the standard setting, improving on the previously best known complexity of roughly $2^{0.930n}$. The newly proposed algorithm also provides asymptotic improvements when a quantum computer is assumed or when the number of samples is limited.
Jingyu Pan, Shivam Bhasin, Fan Zhang, Kui Ren
Persistent fault analysis (PFA) was proposed at CHES 2018 as a novel fault analysis technique. It was shown to completely defeat standard redundancy based countermeasure against fault analysis. In this work, we investigate the security of masking schemes against PFA. We show that with only one fault injection, masking countermeasures can be broken at any masking order. The study is performed on publicly available implementations of masking.