IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
24 October 2018
Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, David Pointcheval
Saikrishna Badrinarayanan, Abhishek Jain, Rafail Ostrovsky, Ivan Visconti
All previous solutions to this problem necessarily rely upon OT (or specific number-theoretic assumptions) even in the common reference string model or the random oracle model or to achieve weaker notions of security such as super-polynomial-time simulation.
In this work, we construct a NISC protocol based on the minimal assumption of one way functions, in the stateless hardware token model. Our construction achieves UC security and requires a single token sent by the receiver to the sender.
Chloé Hébant, Duong Hieu Phan, David Pointcheval
Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe
Georgios Fotiadis, Elisavet Konstantinou
Gerben Geltink
Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, Huijia Lin, Tal Malkin
While it is impossible to construct NMC secure against arbitrary polynomial-time tampering (Dziembowski, Pietrzak, Wichs, ICS '10), the existence of NMC secure against $O(n^c)$-time tampering functions (for any fixed $c$), was shown (Cheraghchi and Guruswami, ITCS '14) via a probabilistic construction. An explicit construction was given (Faust, Mukherjee, Venturi, Wichs, Eurocrypt '14) assuming an untamperable CRS with length longer than the runtime of the tampering function. In this work, we show that under computational assumptions, we can bypass these limitations. Specifically, under the assumptions listed above, we obtain non-malleable codes in the plain model against $O(n^c)$-time tampering functions (for any fixed $c$), with codeword length independent of the tampering time bound.
Our new construction of NMC draws a connection with non-interactive non-malleable commitments. In fact, we show that in the NMC setting, it suffices to have a much weaker notion called quasi non-malleable commitments---these are non-interactive, non-malleable commitments in the plain model, in which the adversary runs in $O(n^c)$-time, whereas the honest parties may run in longer (polynomial) time. We then construct a 4-tag quasi non-malleable commitment from any sub-exponential OWF and the assumption that $\mathbf{E}$ is hard for some exponential size $\mathbf{NP}$-circuits, and use tag amplification techniques to support an exponential number of tags.
Eduardo Cuevas-Farf\'an, Miguel Morales-Sandoval, Ren\'e Cumplido
Eduardo Chielle, Oleg Mazonka, Nektarios Georgios Tsoutsos, Michail Maniatakos
Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, Ronny Van Keer
NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
Applicants from all areas of computer science are welcome to apply. However, specific areas of research interest include: (1) data science, with interest in interactive data analytics, big data systems and distributed systems, and database systems; (2) cyber-security, with experience building and deploying large-scale security solutions in the real world that focus on systems security, network security, privacy, cryptography, and formal methods; (3) artificial intelligence, with experience in machine learning research agendas, from statistical models to neural networks or research broadly applicable to language, robotics and imaging; and (4) bioinformatics and synthetic biology.
To obtain further information about research at NYU Abu Dhabi, visit http://nyuad.nyu.edu/en/research/faculty-research.html
To be considered, applicants should submit a complete curriculum vitae, statements of teaching and research interests that should not exceed three pages each, and no more than three representative publications. Applicants should also arrange for the submission of three letters of reference on their behalf, in PDF format.
To apply visit https://apply.interfolio.com/47185
If you have any questions, please e-mail nyuad.science (at) nyu.edu
Appointments can begin as soon as September 1, 2019, but later start dates are possible.
The University is an equal opportunity employer committed to equity, diversity and social inclusion.
Closing date for applications: 1 February 2019
Contact: Tasso Feldman
More information: https://apply.interfolio.com/47185
NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
Applicants from all areas of computer science are welcome to apply. However, specific areas of research interest include: (1) data science, with interest in interactive data analytics, big data systems and distributed systems, and database systems; (2) cyber-security, with experience building and deploying large-scale security solutions in the real world that focus on systems security, network security, privacy, cryptography, and formal methods; (3) artificial intelligence, with experience in machine learning research agendas, from statistical models to neural networks or research broadly applicable to language, robotics and imaging; and (4) bioinformatics and synthetic biology.
To obtain further information about research at NYU Abu Dhabi, visit http://nyuad.nyu.edu/en/research/faculty-research.html
To be considered, applicants should submit a complete curriculum vitae, statements of teaching and research interests that should not exceed three pages each, and no more than three representative publications. Applicants should also arrange for the submission of three letters of reference on their behalf, in PDF format. For full consideration, complete applications must be received by November 15, 2018.
To apply visit https://apply.interfolio.com/52873
If you have any questions, please e-mail nyuad.science (at) nyu.edu
Appointments can begin as soon as September 1, 2019, but later start dates are possible.
The University is an equal opportunity employer committed to equity, diversity and social inclusion.
Closing date for applications: 15 November 2018
Contact: Tasso Feldman
More information: https://apply.interfolio.com/52873
Linköping University, Sweden
Candidates with solid backgrounds in security or applied crypto are welcome to apply.
PI google scholar profile: https://scholar.google.com/citations?hl=en&user=rYhiAEUAAAAJ&view_op=list_works&sortby=pubdate
Closing date for applications: 10 December 2018
Contact: Prof Jeff Yan (jeff.yan (at) liu.se)
23 October 2018
Anne Canteaut, Virginie Lallemand, Gregor Leander, Patrick Neumann, Friedrich Wiemer
Aggelos Kiayias, Murat Osmanoglu, Alexander Russell, Qiang Tang
Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan He, Bao Li
University of Oxford Mathematical Institute in association with Lincoln College
The combined University and College salary scale has a minimum point of £47,263 per annum. In addition the College pays substantial additional benefits, including a housing allowance of £9,316 p.a. (or single accommodation if available); access to housing loan scheme (upon successful application); membership of a medical insurance scheme; and other allowances including tutor’s allowance of £3,000 p.a. An additional allowance of £2,754 p.a. would be payable upon award of Full Professor title.
The main duties of the post are to carry out, disseminate the results of, obtain funding for, and supervise research at a high international standard in mathematical cryptography, to teach a range of topics in mathematics via lectures, classes and tutorials, and to perform administrative and pastoral functions associated with teaching and research.
The successful candidate will have a PhD in mathematics or a closely related subject and will demonstrate the ability to carry out high-quality independent research at an international level in mathematical cryptography, broadly conceived but firmly rooted in advanced mathematics, along with the ability to teach effectively across a range of topics in mathematics. The duties and responsibilities of the post are set out in the job description.
Applications are particularly welcome from women and black and minority ethnic candidates, who are under-represented in academic posts in Oxford. The University is committed to equality and valuing diversity.
The department was awarded an Athena SWAN Silver Award in 2017 in recognition of its commitment to addressing gender inequalities, to tackling the unequal representation of women in science, and to improving career progression for female academics.
Closing date for applications: 19 November 2018
Contact: The Recruitment Administrator (email: vacancies (at) maths.ox.ac.uk; telephone: +44 (0) 1865 273518)
More information: https://www.maths.ox.ac.uk/node/30043
Inria, Paris, France
He/she will work on improvements and extensions of CryptoVerif (http://cryptoverif.inria.fr). CryptoVerif is a computational security protocol verifier that generates proofs by sequences of games, like proofs manually written by cryptographers. It is implemented in OCaml.
Possible directions among which he/she will be able to choose include:
- new game transformations.
- reduce the size of games.
- specialized prover to simplify random oracle calls, based on indifferentiability lemmas.
- deal with mutable state and loops.
- improve the compatibility with the symbolic protocol verifier ProVerif (http://proverif.inria.fr).
- interface with EasyCrypt (https://www.easycrypt.info/), to delegate parts of proofs to EasyCrypt, in collaboration with some EasyCrypt authors (Pierre-Yves Strub, Benjamin Grégoire, Clément Sartori).
His/her own ideas of research directions will also be most welcome. His/her work will be both theoretical (design, soundness proofs) and practical (implementation, tests). He/she will publish his/her work in high quality computer science conferences. He/she will collaborate with members working on CryptoVerif (Bruno Blanchet, Benjamin Lipp, Karthikeyan Bhargavan).
We will also consider applications of research engineers; the engineer would focus on the implementation part.
- Required expertise:
- knowledge in cryptography and/or in formal methods: program semantics, static analysis, program transformations
- knowledge of OCaml (object part not required)
- fluency in English
- PhD in computer science
- Duration: initial contract 1 year, possibility of extensions.
- Start: beginning of 2019 (2 months hiring delay).
- Please send detailed curriculum vitae, motivation letter, and references to Bruno Blanchet, bruno.blanchet (at) inria.fr
Closing date for applications: 21 December 2018
Contact: Bruno Blanchet, bruno.blanchet (at) inria.fr
More information: http://prosecco.inria.fr/personal/bblanche/postdoc.html
ENS de Lyon, France
The post-doc will work with the cryptography researchers of ENS de Lyon. Topics covered by the group cover: protocols, functional encryption, foundations of lattice-based cryptography, lattice algorithms, cryptanalysis, pseudo-random functions.
Applicants should have already completed a PhD in a relevant area (or be very near PhD completion). They should have an outstanding research track record in cryptography or a relevant area (typically results published in top tier venues). They should demonstrate scientific creativity and research independence.
This is a full-time, fixed-term position based in Lyon. Duration is negotiable. Salary can be adapted based on experience.
Applications should be sent by email to benoit[dot]libert[at]ens-lyon[dot]fr, alain[dot]passelegue[at]ens-lyon[dot]fr, damien[dot]stehle[at]gmail[dot]com, fabien[dot]laguillaumie[at]ens-lyon[dot]fr. They should include a CV, a list of publications (with the top 3 ones highlighted) and contact information of two persons who are willing to give references.
Closing date for applications: 1 February 2019
Input Output Hong Kong -
You will have a good understanding of cryptography (e.g. mathematics, information theory, primitives, implementations) and the ability to deliver working implementation related to these domains. The ideal candidate should understand and follow best engineering processes and practices and should demonstrate a working knowledge of a functional programming language (preference is for Haskell), and system languages (preferably Rust or C).
Skills & Requirements:
Skills and Knowledge – - A solid understanding of cryptography: basic theory & use. System programming experience. Ability to translate specifications (e.g. cryptography research papers, RFCs) into working code. Know when and how to use basic cryptographic primitives. Can reason about complex & abstract problems
Completion of a relevant degree such as Computer Science, Software Engineering, Mathematics or a related technical discipline.
Responsibilities - Read & review cryptographic research papers and implement them as a prototype. Improve existing implementations of common cryptographic primitives and/or interface/translate them to a different programming language. Transform prototypes into production level projects. Interact and coordinate with research, engineering and product management teams
Desired competencies - We are particularly interested in at least one of them having the following profile: Familiarity and/or experience with privacy enhancing cryptographic technologies, e.g., zero-knowledge proofs and/or SNARKs, multi-party computation, and differential privacy. Functional programming experience (Preferably Scala or Haskell)
Closing date for applications: 30 November 2018
Contact: david.rountree (at) iohk.io
More information: https://iohk.io/careers/#op-286193-specialized-cryptography-engineer-