International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

06 September 2018

David Sommer, Esfandiar Mohammadi, Sebastian Meiser
ePrint Report ePrint Report
In recent years, privacy enhancing technologies have gained tremendous momentum and they are expected to keep a sustained importance. Quantifying the degree of privacy offered by any mechanism working on potentially sensitive data is a complex and well-researched topic; epsilon-differential privacy (DP) and its slightly weaker and more versatile variant (epsilon,delta)-approximate differential privacy (ADP) have become the de-facto standard for privacy measures in the literature. Recently, novel variants of (A)DP focused on giving tighter privacy bounds under continual observation.

In this paper, we unify many of these previous works in a common core theory, focused on the privacy loss of a mechanism. We show that in sequential composition of the mechanism, the privacy loss (represented as a distribution) undergoes a convolution, which in turn enables us to show the central limit theorem for differential privacy: the privacy loss of any mechanism will converge to a Gauss distribution. This observation leads us to several practically relevant insights: 1) we show that several of the novel DP-variants are equally expressive as ADP, 2) we improve existing bounds, such as the moments accountant bound, 3) we derive exact ADP guarantees for the Gauss mechanism, i.e., an analytical and simple formula to directly calculate ADP (not an over-approximating bound), 4) we derive exact ADP guarantees for the Randomized Response, and, 5) we characterize the privacy guarantees of a mechanism by the Gauss distribution to which it converges, its privacy class, and using normal approximation theorems derive novel upper and lower ADP bounds for arbitrary mechanisms.
Expand
Ritam Bhaumik, Eik List, Mridul Nandi
ePrint Report ePrint Report
Strong Pseudo-random Permutations (SPRPs) are important for various applications. In general, it is desirable to base an SPRP on a single-keyed primitive for minimizing the implementation costs. For constructions built on classical block ciphers, Nandi showed at ASIACRYPT'15 that at least two calls to the primitive per processed message block are required for SPRP security, assuming that all further operations are linear. The ongoing trend of using tweakable block ciphers as primitive has already led to MACs or encryption modes with high security and efficiency properties. Thus, three interesting research questions are hovering in the domain of SPRPs: (1) if and to which extent the bound of two calls per block can be reduced with a tweakable block cipher, (2) how concrete constructions could be realized, and (3) whether full $n$-bit security is achievable from primitives with $n$-bit state size. The present work addresses all three questions. Inspired by Iwata et al.'s ZHash proposal at CRYPTO'17, we propose the ZCZ (ZHash-Counter-ZHash) construction, a single-key variable-input-length SPRP based on a single tweakable block cipher whose tweak length is at least its state size. ZCZ possesses close to optimal properties with regards to both performance and security: not only does it require only asymptotically $3\ell/2$ calls to the primitive for $\ell$-block messages, but we also show that this figure is close to the minimum by an PRP distinguishing attack on any construction with tweak size of $\tau = n$ bits and fewer than $(3\ell-1)/2$ calls to the same primitive. Moreover, it provides optimal $n$-bit security for a primitive with $n$-bit state and tweak size.
Expand
Yunhua Wen, Shengli Liu
ePrint Report ePrint Report
A fuzzy extractor (FE) aims at deriving and reproducing (almost) uniform cryptographic keys from noisy non-uniform sources. To reproduce an identical key $R$ from subsequent readings of a noisy source, it is necessary to eliminate the noises from those readings. To this end, a public helper string $P$, together with key $R$, is produced from the first reading of the source during the initial enrollment phase.

In this paper, we consider computational fuzzy extractor. We formalize robustly reusable fuzzy extractor (rrFE) which considers reusability and robustness simultaneously in the Common Reference String (CRS) model. Reusability of rrFE deals with source reuse. It guarantees that the key $R$ output by fuzzy extractor is pseudo-random even if the initial enrollment is applied to the same source several times, generating multiple public helper strings and keys $(P_i, R_i)$. Robustness of rrFE deals with active probabilistic polynomial-time adversaries, who may manipulate the public helper string $P_i$ to affect the reproduction of $R_i$. Any modification of $P_i$ by the adversary will be detected by the robustness of rrFE.
Expand
Haiyang Xue, Xianhui Lu, Bao Li, Bei Liang, Jingnan He
ePrint Report ePrint Report
Motivated by abstracting the common idea behind several implicitly authenticated key exchange (AKE) protocols, we introduce a primitive that we call double-key key encapsulation mechanism (2-key KEM). It is a special type of KEM involving two pairs of secret-public keys and satisfying some function and security property. Such 2-key KEM serves as the core building block and provides alternative approaches to simplify the constructions of AKE. To see the usefulness of 2-key KEM, we show how several existing constructions of AKE can be captured as 2-key KEM and understood in a unified framework, including widely used HMQV, NAXOS, Okamoto-AKE, and FSXY12-13 schemes. Then, we show 1) how to construct 2-key KEM from concrete assumptions, 2) how to adapt the classical Fujisaki-Okamoto transformation and KEM combiner to achieve the security requirement of 2-key KEM, 3) an elegant Kyber-AKE over lattice using the improved Fujisaki-Okamoto technique.
Expand
Chun Guo, Lei Wang
ePrint Report ePrint Report
Key-Alternating Feistel (KAF) ciphers, a.k.a. Feistel-2 models, refer to Feistel networks with round functions of the form $F_i(k_i\oplus x_i)$, where $k_i$ is the (secret) round-key and $F_i$ is a public random function. This model roughly captures the structures of many famous Feistel ciphers, and the most prominent instance is DES.

Existing provable security results on KAF assumed independent round-keys and round functions (ASIACRYPT 2004 & FSE 2014). In this paper, we investigate how to achieve security under simpler and more realistic assumptions: with round-keys derived from a short main-key, and hopefully with identical round functions.

For birthday-type security, we consider 4-round KAF, investigate the minimal conditions on the way to derive the four round-keys, and prove that when such adequately derived keys and the same round function are used, the 4-round KAF is secure up to $2^{n/2}$ queries.

For beyond-birthday security, we focus on 6-round KAF. We prove that when the adjacent round-keys are independent, and independent round-functions are used, the 6 round KAF is secure up to $2^{2n/3}$ queries. To our knowledge, this is the first beyond-birthday security result for KAF without assuming completely independent round-keys.

Our results hold in the multi-user setting as well, constituting the first non-trivial multi-user provable security results on Feistel ciphers. We finally demonstrate applications of our results on designing key-schedules and instantiating keyed sponge constructions.
Expand
Yoshitatsu Matsuda, Tadanori Teruya, Kenji Kasiwabara
ePrint Report ePrint Report
The lattice basis reduction algorithm is a method for solving the Shortest Vector Problem (SVP) on lattices. There are many variants of the lattice basis reduction algorithm such as LLL, BKZ, and RSR. Though BKZ has been used most widely, it is shown recently that some variants of RSR are quite efficient for solving a high-dimensional SVP (they achieved many best scores in TU Darmstadt SVP challenge). RSR repeats alternately the generation of new very short lattice vectors from the current basis (we call this procedure ``random sampling'') and the improvement of the current basis by utilizing the generated very short lattice vectors. Therefore, it is important for investigating and ameliorating RSR to estimate the success probability of finding very short lattice vectors by combining the current basis. In this paper, we propose a new method for estimating the success probability by the Gram-Charlier approximation, which is a basic asymptotic expansion of any probability distribution by utilizing the higher order cumulants such as the skewness and the kurtosis. The proposed method uses a ``parametric'' model for estimating the probability, which gives a closed-form expression with a few parameters. Therefore, the proposed method is much more efficient than the previous methods using the non-parametric estimation. This enables us to investigate the lattice basis reduction algorithm intensively in various situations and clarify its properties. Numerical experiments verified that the Gram-Charlier approximation can estimate the actual distribution quite accurately. In addition, we investigated RSR and its variants by the proposed method. Consequently, the results showed that the weighted random sampling is useful for generating shorter lattice vectors. They also showed that it is crucial for solving the SVP to improve the current basis periodically.
Expand
Yudi Zhang, Debiao He, Xinyi Huang, Ding Wang, Kim-Kwang Raymond Choo
ePrint Report ePrint Report
Unlike black-box cryptography, an adversary in a white-box security model has full access to the implementation of the cryptographic algorithm. Thus, white-box implementation of cryptographic algorithms is more practical. Nevertheless, in recent years, there is no white-box implementation for public key cryptography. In this paper, we propose the first white-box implementation of the identity-based signature scheme in the IEEE P1363 standard. Our main idea is to hide the private key to multiple lookup tables, so that the private key cannot be leaked during the algorithm executed in the untrusted environment. We prove its security in both black-box and white-box models. We also evaluate the performance of our white-box implementations, in order to demonstrate utility for real-world applications.
Expand
Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, Lei Hu
ePrint Report ePrint Report
Cryptanalysis with SAT/SMT, MILP and CP has increased in popularity among symmetric-key cryptanalysts and designers due to its high degree of automation. So far, this approach covers differential, linear, impossible differential, zero-correlation, and integral cryptanalysis. However, the Demirci-Sel{\c{c}}uk meet-in-the-middle ($\mathcal{DS}$-$\mathsf{MITM}$) attack is one of the most sophisticated techniques that has not been automated with this approach. By an in-depth study of Derbez and Fouque's work on $\mathcal{DS}$-$\mathsf{MITM}$ analysis with dedicated search algorithms, we identify the crux of the problem and present a method for automatic $\mathcal{DS}$-$\mathsf{MITM}$ attack based on general constraint programming, which allows the cryptanalysts to state the problem at a high level without having to say how it should be solved. Our method is not only able to enumerate distinguishers but can also partly automate the key-recovery process. This approach makes the $\mathcal{DS}$-$\mathsf{MITM}$ cryptanalysis more straightforward and easier to follow, since the resolution of the problem is delegated to off-the-shelf constraint solvers and therefore decoupled from its formulation. We apply the method to SKINNY, TWINE, and LBlock, and we get the currently known best $\mathcal{DS}$-$\mathsf{MITM}$ attacks on these ciphers. Moreover, to demonstrate the usefulness of our tool for the block cipher designers, we exhaustively evaluate the security of $8! = 40320$ versions of LBlock instantiated with different words permutations in the F functions. It turns out that the permutation used in the original LBlock is one of the $64$ permutations showing the strongest resistance against the $\mathcal{DS}$-$\mathsf{MITM}$ attack.The whole process is accomplished on a PC in less than 2 hours. The same process is applied to TWINE, and similar results are obtained.
Expand
Lior Rotem, Gil Segev
ePrint Report ePrint Report
We present a cryptographic primitive $\mathcal{P}$ satisfying the following properties:

-- Rudich's seminal impossibility result (PhD thesis '88) shows that $\mathcal{P}$ cannot be used in a black-box manner to construct an injective one-way function.

-- $\mathcal{P}$ can be used in a non-black-box manner to construct an injective one-way function assuming the existence of a hitting-set generator that fools deterministic circuits (such a generator is known to exist based on the worst-case assumption that $\mbox{E} = \mbox{DTIME}(2^{O(n)})$ has a function of deterministic circuit complexity $2^{\Omega(n)}$).

-- Augmenting $\mathcal{P}$ with a trapdoor algorithm enables a non-black-box construction of an injective trapdoor function (once again, assuming the existence of a hitting-set generator that fools deterministic circuits), while Rudich's impossibility result still holds.

The primitive $\mathcal{P}$ and its augmented variant can be constructed based on any injective one-way function and on any injective trapdoor function, respectively, and they are thus unconditionally essential for the existence of such functions. Moreover, $\mathcal{P}$ can also be constructed based on various known primitives that are secure against related-key attacks, thus enabling to base the strong structural guarantees of injective one-way functions on the strong security guarantees of such primitives.

Our application of derandomization techniques is inspired mainly by the work of Barak, Ong and Vadhan (CRYPTO '03), which on one hand relies on any one-way function, but on the other hand only results in a non-interactive perfectly-binding commitment scheme (offering significantly weaker structural guarantees compared to injective one-way functions), and does not seem to enable an extension to public-key primitives.

The key observation underlying our approach is that Rudich's impossibility result applies not only to one-way functions as the underlying primitive, but in fact to a variety of "unstructured'' primitives. We put forward a condition for identifying such primitives, and then subtly tailor the properties of our primitives such that they are both sufficiently unstructured in order to satisfy this condition, and sufficiently structured in order to yield injective one-way and trapdoor functions. This circumvents the basic approach underlying Rudich's long-standing evidence for the difficulty of constructing injective one-way functions (and, in particular, injective trapdoor functions) based on seemingly weaker or unstructured assumptions.
Expand
Orr Dunkelman, Senyang Huang
ePrint Report ePrint Report
In this paper we study the problem of recovering a secret S-box from its difference distribution table (DDT). While being an interesting theoretical problem on its own, the ability to recover the S-box from the DDT of a secret S-box can be used in cryptanalytic attacks where the adversary can obtain the DDT (e.g., in Bar-On et al.’s attack on GOST), in supporting theoretical analysis of the properties of difference distribution tables (e.g., in Boura et al.’s work), or as a tool for developing an S-box with a unique differential trapdoor. We show that using the well established relation between the DDT and the linear approximation table (LAT), one can devise an algorithm different from the guess- and-determine algorithm proposed by Boura et al. Moreover, we show how to exploit this relation, and embed the knowledge obtained from it in the guess-and-determine algorithm, and we discuss when our new method gives better results than the simple guess and determine attack.
Expand
Ling Song, Jian Guo
ePrint Report ePrint Report
Cube-attack-like cryptanalysis on round-reduced Keccak was proposed by Dinur et al. at EUROCRYPT 2015. It recovers the key through two phases: the preprocessing phase for precomputing a look-up table and online phase for querying the output and getting the cube sum with which the right key can be retrieved by looking up the precomputed table. It was shown that such attacks are efficient specifically for Keccak-based constructions with small nonce or message block size. In this paper, we provide a mixed integer linear programming (MILP) model for cube-attack-like cryptanalysis on keyed Keccak, which does not impose any unnecessary constraint on cube variables and finds almost optimal cubes by balancing the two phases of cube-attack-like cryptanalysis. Our model is applied to Ketje Jr, Ketje Sr, a Xoodoo-based authenticated encryption and Keccak-MAC-512, all of which have a relatively small nonce or message block size. As a result, time complexities of 5-round attacks on Ketje Jr and 7-round attacks on Ketje Sr can be improved significantly. Meanwhile, 6-round attacks, one more round than the previous best attack, are possible if the key size of Ketje V1 (V2) is reduced to 72 (80) bits. For Xoodoo-based AE in Ketje style, the attack reaches 6 rounds. Additionally, a 7-round attack of Keccak-MAC-512 is achieved. To verify the correctness of our attacks, a 5-round attack on Ketje V1 is implemented and tested practically. It is noted that this work does not threaten the security of any Keccak-based construction.
Expand
Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Markus Schofnegger
ePrint Report ePrint Report
Frit is a cryptographic 384-bit permutation recently proposed by Simon et al. and follows a novel design approach for built-in countermeasures against fault attacks. We analyze the cryptanalytic security of Frit in different use-cases and propose attacks on the full-round primitive. We show that the inverse Frit$^{-1}$ of Frit is significantly weaker than Frit from an algebraic perspective, despite the better diffusion of the inverse of the used mixing functions: Its round function has an effective algebraic degree of only about 1.325. We show how to craft structured input spaces to linearize up to 4 (or, conditionally, 5) rounds and thus further reduce the degree. As a result, we propose very low-dimensional start-in-the-middle zero-sum partitioning distinguishers for unkeyed Frit, as well as integral distinguishers for round-reduced Frit and full-round Frit$^{-1}$. We also consider keyed Frit variants using Even-Mansour or arbitrary round keys. By using optimized interpolation attacks and symbolically evaluating up to 5 rounds of Frit$^{-1}$, we obtain key-recovery attacks with a complexity of either $2^{59}$ chosen plaintexts and $2^{67}$ time, or $2^{18}$ chosen ciphertexts and time (about 10 seconds in practice).
Expand
Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, Christopher W. Fletcher
ePrint Report ePrint Report
Blocking microarchitectural (digital) side channels is one of the most pressing challenges in hardware security today. Recently, there has been a surge of effort that attempts to block these leakages by writing programs data obliviously. In this model, programs are written to avoid placing sensitive data-dependent pressure on shared resources. Despite recent efforts, however, running data oblivious programs on modern machines today is insecure and low performance. First, writing programs obliviously assumes certain instructions in today's ISAs will not leak privacy, whereas today's ISAs and hardware provide no such guarantees. Second, writing programs to avoid data-dependent behavior is inherently high performance overhead.

This paper tackles both the security and performance aspects of this problem by proposing a Data Oblivious ISA extension. On the security side, we present ISA design principles to block microarchitectural side channels, and embody these ideas in a concrete ISA capable of safely executing existing data oblivious programs. On the performance side, we design our ISA with support for efficient memory oblivious computation, and with safety features that allow modern hardware optimizations, e.g., out-of-order speculative execution, to remain enabled in the common case.

We provide a complete hardware prototype of our ideas, built on top of the RISC-V out-of-order, speculative BOOM processor, and prove that the ISA can provide the advertised security through formal analysis of an abstract BOOM-style machine. We evaluate area overhead of hardware mechanisms needed to support our prototype, and provide performance experiments showing how the ISA speeds up a variety of existing data oblivious codes (including "constant time" cryptography and memory oblivious data structures), in addition to improving their security and portability.
Expand
Nicolas T. Courtois
ePrint Report ePrint Report
In this paper we study cryptanalysis with non-linear polynomials cf. Eurocrypt’95 (adapted to Feistel ciphers at Crypto 2004). Previously researchers had serious difficulties in making such attacks work. Even though this is less general than a general space partitioning attack (FSE’97), a polynomial algebraic approach has enormous advantages. Properties are more intelligible and algebraic computational methods can be applied in order to discover or construct the suitable properties. In this paper we show how round invariants can be found for more or less any block cipher, by solving a certain surprisingly simple single algebraic equation (or two). Then if our equation has solutions, which is far from being obvious, it will guarantee that some polynomial invariant will work for an arbitrarily large number of encryption rounds. This paper is a proof of concept showing that it IS possible, for at least one specific quite complex real-life cipher to construct in a systematic way, a non-linear component and a variety of non-linear polynomial invariants holding with probability 1 for any number of rounds and any key/IV. Thus we are able to weaken a block cipher in a permanent and pervasive way. An example of a layered attack with two stages is also shown. Moreover we show that sometimes our equation reduces to zero, and this leads to yet stronger invariants, which work for any Boolean function including the original historical one used in 1970-1990.
Expand
Victor Arribas, Svetla Nikova, Vincent Rijmen
ePrint Report ePrint Report
Recently the CAESAR competition has announced several finalists among the submitted authenticated encryption algorithms, after an open selection process during the last 5 years. Applications using these algorithms are rapidly increasing today. Devices implementing these applications are enormously susceptible to physical attacks, which are able to retrieve secret data through side-channel information such as the power consumption or the electromagnetic radiations. In this work we present a Side-Channel Analysis resistant hardware implementation of the whole family of authenticated encryption schemes KETJE. By changing just one parameter, any of the KETJE designs can be obtained, and tailored for different applications, either lightweight or high throughput. We introduce a new protected KECCAK implementation, as well as unprotected and protected KETJE implementations, which allow both encryption and decryption modes in the same module. In order to secure these implementations we make use of the masking scheme known as Threshold Implementations and complement it with the technique of “Changing of the Guards”, achieving a first-order Side-Channel Analysis protected implementation with zero extra randomness needed. This way, no dedicated PRNG needs to be additionally implemented, avoiding issues such as the security of the PRNG itself or the quality of the randomness.
Expand
Avik Chakraborti, Nilanjan Datta, Mridul Nandi, Kan Yasuda
ePrint Report ePrint Report
This paper presents a lightweight, sponge-based authenticated encryption (AE) family called Beetle. When instantiated with the PHOTON permutation from CRYPTO 2011, Beetle achieves the smallest footprint - consuming only a few more than 600 LUTs on FPGA while maintaining 64-bit security. This figure is significantly smaller than all known lightweight AE candidates which consume more than 1,000 LUTs, including the latest COFB-AES from CHES~2017. In order to realize such small hardware implementation, we equip Beetle with an ``extremely tight'' bound of security. The trick is to use combined feedback to create a difference between the cipher text block and the rate part of the next feedback (in traditional sponge these two values are the same). Then we are able to show that Beetle is provably secure up to $\min \{c-\log r, {b/2}, r\}$ bits, where $b$ is the permutation size and $r$ and $c$ are parameters called rate and capacity, respectively. The tight security bound allows us to select the smallest security parameters, which in turn result in the smallest footprint.
Expand
Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul
ePrint Report ePrint Report
SUM-ECBC (Yasuda, CT-RSA 2010) is the first beyond birthday bound (BBB) secure block cipher based deterministic MAC. After this work, some more BBB secure deterministic MACs have been proposed, namely PMAC_Plus (Yasuda, CRYPTO 2011), 3kf9 (Zhang et al., ASIACRYPT 2012) and LightMAC_Plus (Naito, ASIACRYPT 2017). In this paper, we have abstracted out the inherent design principle of all these BBB secure MACs and present a generic design paradigm to construct a BBB secure pseudo random function, namely Double-block Hash-then-Sum or in short (DbHtS). A DbHtS construction, as the name implies, computes a double block hash on the message and then sum the encrypted output of the two hash blocks. Our result renders that if the underlying hash function meets certain security requirements (namely cover-free and block-wise universal advantage is low), DbHtS construction provides $2n/3$-bit security. We demonstrate the applicability of our result by instantiating all the existing beyond birthday secure deterministic MACs (e.g., SUM-ECBC, PMAC_Plus, 3kf9, LightMAC_Plus) as well as a simple two-keyed variant for each of them and some algebraic hash based constructions.
Expand
Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame, Srdjan Capkun
ePrint Report ePrint Report
Decentralized blockchains offer attractive advantages over traditional payments such as the ability to operate without a trusted authority and increased user privacy. However, the verification of blockchain payments requires the user to download and process the entire chain which can be infeasible for resource-constrained devices, such as mobile phones. To address such concerns, most major blockchain systems support lightweight clients that outsource most of the computational and storage burden to full blockchain nodes. However, such payment verification methods leak considerable information about the underlying clients, thus defeating user privacy that is considered one of the main goals of decentralized cryptocurrencies.

In this paper, we propose a new approach to protect the privacy of lightweight clients in blockchain systems like Bitcoin. Our main idea is to leverage commonly available trusted execution capabilities, such as SGX enclaves. We design and implement a system called BITEwhere enclaves on full nodes serve privacy-preserving requests from lightweight clients. As we will show, naive serving of client requests from within SGX enclaves still leaks user information. BITE therefore integrates several privacy preservation measures that address external leakage as well as SGX side-channels.

We show that the resulting solution provides strong privacy protection and at the same time improves the performance of current lightweight clients.
Expand
Rennes, France, 18 September - 20 September 2018
Event Calendar Event Calendar
Event date: 18 September to 20 September 2018
Expand

04 September 2018

Montréal, Canada, 8 December 2018
Event Calendar Event Calendar
Event date: 8 December 2018
Submission deadline: 8 October 2018
Notification: 1 November 2018
Expand
◄ Previous Next ►