International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

18 December 2024

Li Yu, Je Sen Teh
ePrint Report ePrint Report
In this paper, we investigate the security of lightweight block ciphers, focusing on those that utilize the ADD-Rotate-XOR (ARX) and AND-Rotate-XOR (AND-RX) design paradigms. More specifically, we examine their resilience against boomerang-style attacks. First, we propose an automated search strategy that leverages the boomerang connectivity table (BCT) for AND operations ($\wedge BCT$) to conduct a complete search for boomerang and rectangle distinguishers for AND-RX ciphers. The proposed search strategy automatically considers all possible $\wedge BCT$ switches in the middle of the boomerang to optimise distinguishing probability. The correctness of the search strategy was verified experimentally. We were able to find the best boomerang and rectangle distinguishers to date in the single-key model for lightweight block ciphers KATAN32/48/64} and SIMON32/48. Next, we investigated BCT properties of ARX ciphers and discovered that a truncated boomerang switch could be formulated for the lightweight ARX cipher, CHAM. We were able to find the best single-key and related-key rectangle distinguishers to date for Cham. Our findings provide more accurate security margins of these lightweight ciphers against boomerang-style attacks.
Expand
Thomas Attema, Michael Klooß, Russell W. F. Lai, Pavlo Yatsyna
ePrint Report ePrint Report
Proving knowledge soundness of an interactive proof from scratch is often a challenging task. This has motivated the evelopment of various special soundness frameworks which, in a nutshell, separate knowledge extractors into two parts: (1) an extractor to produce a set of accepting transcripts conforming to some structure; (2) a witness recovery algorithm to recover a witness from a set of transcripts with said structure. These frameworks take care of (1), so it suffices for a protocol designer to specify (2) which is often simple(r).

Recently, works by Bünz–Fisch (TCC’23) and Aardal et al. (CRYPTO’24) provide new frameworks, called almost special soundness and predicate special soundness, respectively. To handle insufficiencies of special soundness, they deviate from its spirit and augment it in different ways. The necessity for their changes is that special soundness does not allow the challenges for useful sets of transcripts to depend on the transcripts themselves, but only on the challenges in the transcripts. As a consequence, (generalised) special soundness cannot express extraction strategies which reduce a computational problem to finding “inconsistent” accepting transcripts, for example in PCP/IOP-based or lattice-based proof systems, and thus provide (very) sub-optimal extractors. In this work, we introduce adaptive special soundness which captures extraction strategies exploiting inconsistencies between transcripts, e.g. transcripts containing different openings of the same commitment. Unlike (generalised) special soundness (Attema, Fehr, and Resch (TCC’23)), which specifies a target transcript structure, our framework allows specifying an extraction strategy which guides the extractor to sample challenges adaptively based on the history of prior transcripts. We extend the recent (almost optional) extractor of Attema, Fehr, Klooß and Resch (EPRINT 2023/1945) to our notion, and argue that it encompasses almost special soundness and predicate special soundness in many cases of interest.

As a challenging application, we modularise and generalise the lattice Bulletproofs analysis by Bünz–Fisch (TCC’23) using the adaptive special soundness framework. Moreover, we extend their analysis to the ring setting for a slightly wider selection of rings than rational integers.
Expand
Enrico Bottazzi, Chan Nam Ngo, Masato Tsutsumi
ePrint Report ePrint Report
Multilateral Trade Credit Set-off (MTCS) is a process run by a service provider that collects trade credit data (i.e. obligations from a firm to pay another firm) from a network of firms and detects cycles of debts that can be removed from the system. The process yields liquidity savings for the participants, who can discharge their debts without relying on expensive loans. We propose an MTCS protocol that protects firms' sensitive data, such as the obligation amount or the identity of the firms they trade with. Mathematically, this is analogous to solving the Minimum Cost Flow (MCF) problem over a graph of $n$ firms, where the $m$ edges are the obligations. State-of-the-art techniques for Secure MCF have an overall complexity of $O(n^{10} \log n)$ communication rounds, making it barely applicable even to small-scale instances. Our solution leverages novel secure techniques such as Graph Anonymization and Network Simplex to reduce the complexity of the MCF problem to $O(max(n, \log\log{n+m}))$ rounds of interaction per pivot operations in which $O(max(n^2, nm))$ comparisons and multiplications are performed. Experimental results show the tradeoff between privacy and optimality.
Expand
Ittai Abraham, Gilad Asharov, Anirudh Chandramouli
ePrint Report ePrint Report
The COOL protocol of Chen (DISC'21) is a major advance that enables perfect security for various tasks (in particular, Byzantine Agreement in Synchrony and Reliable Broadcast in Asynchrony). For an input of size $L$ bits, its communication complexity is $O(nL+n^2 \log n)$, which is optimal up to a $\log n$ factor. Unfortunately, Chen’s analysis is rather intricate and complex.

Our main contribution is a simple analysis of a new variant of COOL based on elementary counting arguments. Our main consistency proof takes less than two pages (instead of over 20 pages), making the COOL protocol much more accessible. In addition, the simple analysis allows us to improve the protocol by reducing one round of communication and reducing the communication complexity by 40%.

In addition, we suggest a new way of extracting the core properties of COOL as a new primitive, which we call Graded Dispersal. We show how Graded Dispersal can then be used to obtain efficient solutions for Byzantine Agreement, Verifiable Information Dispersal, Gradecast, and Reliable Broadcast (in both Synchrony and Asynchrony, where appropriate). Our improvement of COOL directly applies here, and we improve the state-of-the-art in all those primitives by reducing at least one round and 40% communication.
Expand
Ping Wang
ePrint Report ePrint Report
The question of whether the complexity class P equals NP is a major unsolved problem in theoretical computer science. In this paper, we introduce a new language, the Add and XNOR (the negation of exclusive or (XOR)) problem, which has the simplest structure and perfect randomness, by extending the subset sum problem. We prove that P $\neq$ NP as it shows that an exhaustive search is necessary to solve the Add and XNOR problem. That is, problems that are verifiable in polynomial time are not necessarily solvable in polynomial time.
Expand

17 December 2024

Gregory D. Kahanamoku-Meyer, Seyoon Ragavan, Vinod Vaikuntanathan, Katherine Van Kirk
ePrint Report ePrint Report
We present a compact quantum circuit for factoring a large class of integers, including some whose classical hardness is expected to be equivalent to RSA (but not including RSA integers themselves). To our knowledge, it is the first polynomial-time circuit to achieve sublinear qubit count for a classically-hard factoring problem; the circuit also achieves sublinear depth and nearly linear gate count. We build on the quantum algorithm for squarefree decomposition discovered by Li, Peng, Du and Suter (Nature Scientific Reports 2012), which relies on computing the Jacobi symbol in quantum superposition. Our circuit completely factors any number $N$, whose prime decomposition has distinct exponents, and finds at least one non-trivial factor if not all exponents are the same. In particular, to factor an $n$-bit integer $N=P^2 Q$ (with $P$ and $Q$ prime, and $Q<2^m$ for some $m$), our circuit uses $\widetilde{O}(m)$ qubits and has depth at most $\widetilde{O}(m + n/m)$, with $\widetilde{O}(n)$ quantum gates. When $m=\Theta(n^a)$ with $2/3 < a < 1$, the space and depth are sublinear in $n$, yet no known classical algorithms exploit the relatively small size of $Q$ to run faster than general-purpose factoring algorithms. We thus believe that factoring such numbers has potential to be the most concretely efficient classically-verifiable proof of quantumness currently known.

The technical core of our contribution is a new space-efficient quantum algorithm to compute the Jacobi symbol of $A$ mod $B$, in the regime where $B$ is classical and much larger than $A$. Crucially, our circuit reads the bits of the classical value $B$ in a streaming fashion, never storing more than $\widetilde{O}(\log A)$ qubits of quantum information at one time. In the context of the larger Jacobi algorithm for factoring $N = P^2Q$, this reduces the overall qubit count to be roughly proportional to the length of $Q$, rather than the length of $N$. Our circuit for computing the Jacobi symbol is also highly gate-efficient and parallelizable, achieving gate count $\widetilde{O}(\log B)$ and depth at most $\widetilde{O}(\log A + \log B/\log A)$. Finally, we note that our circuit for computing the Jacobi symbol generalizes to related problems, such as computing the greatest common divisor, and thus could be of independent interest.
Expand
Antonio Flórez-Gutiérrez, Lorenzo Grassi, Gregor Leander, Ferdinand Sibleyras, Yosuke Todo
ePrint Report ePrint Report
We introduce a new approach between classical security proofs of modes of operation and dedicated security analysis for known cryptanalysis families: General Practical Cryptanalysis. This allows us to analyze generically the security of the sum of two keyed permutations against known attacks. In many cases (of course, not all), we show that the security of the sum is strongly linked to that of the composition of the two permutations. This enables the construction of beyond-birthday bound secure low-latency PRFs by cutting a known-to-be-secure block cipher into two equal parts. As a side result, our general analysis shows an inevitable difficulty for the key recovery based on differential-type attacks against the sum, which leads to a correction of previously published attacks on the dedicated design Orthros.
Expand
Seonhong Min, Yongsoo Song
ePrint Report ePrint Report
Fully Homomorphic Encryption (FHE) enables secure computation of functions on ciphertexts without requiring decryption. Specifically, AP-like HE schemes exploit an intrinsic bootstrapping method called blind rotation. In blind rotation, a look-up table is homomorphically evaluated on the input ciphertext through the iterative multiplication of monomials. However, the algebraic structure of the multiplicative group of monomials imposes certain limitations on the input and output plaintext space: 1. only a fraction of the input plaintext space can be bootstrapped, 2. the output plaintext space is restricted to subsets of real numbers.

In this paper, we design a novel bootstrapping method called slot blind rotation. The key idea of our approach is to utilize the automorphism group instead of monomials. More specifically, the look-up table is encoded into a single polynomial using SIMD (Single Instruction Multiple Data) packing and is rotated via a series of homomorphic multiplications and automorphisms. This method achieves two significant advantages: 1. the entire input plaintext space can be bootstrapped, 2. a more broad output plaintext space, such as complex numbers or finite field/rings can be supported.

Finally, we present a new HE scheme leveraging the slot blind rotation technique and provide a proof-of-concept implementation. We also demonstrate the the benchmark results and provide recommended parameter sets.
Expand
Jezabel Molina-Gil, Cándido Caballero-Gil, Judit Gutiérrez-de-Armas, Moti Yung
ePrint Report ePrint Report
This article presents a cryptanalysis of a 19th-century encrypted manuscript discovered in the archives of Conde de Siete Fuentes in Tenerife, Canary Islands, Spain. The manuscript, preserved by the heirs of the 6th Count of Valle de Salazar, utilizes a polyalphabetic substitution cipher. The cryptanalysis was performed by applying statistical frequency analysis and developing a Python script for decryption, resulting in the authors successfully deciphering the message. The decrypted letter reveals political communications discussing the strategic positioning of Tenerife as the capital, the dissolution of local councils, and the influence of key political figures. The analysis compares the cipher with historical encryption techniques, and identifies the unique characteristics of the manuscript’s encryption method. The study highlights the political dynamics and alliances within Tenerife’s nobility and their interactions with the central Spanish government, providing significant insights into, both, the cryptographic practices and political maneuvers of the time.
Expand

15 December 2024

Madhurima Das, Bodhisatwa Mazumdar
ePrint Report ePrint Report
This work investigates persistent fault analysis on ASCON cipher that has been recently standardized by NIST USA for lightweight cryptography applications. In persistent fault, the fault once injected through RowHammer injection techniques, exists in the system during the entire encryption phase. In this work, we propose a model to mount persistent fault analysis (PFA) on ASCON cipher. In the finalization round of the ASCON cipher, we identify that the fault-injected S-Box operation in the permutation round, $p^{12}$, is vulnerable to leaking infor- mation about the secret key. The model can exist in two variants, a single instance of fault-injected S-Box out of 64 parallel S-Box invocations, and the same faulty S-Box iterated 64 times. The attack model demonstrates that any Spongent construction operating with authenticated encryption with associated data (AEAD) mode is vulnerable to persistent faults. In this work, we demonstrate the scenario of a single fault wherein the fault, once injected is persistent until the device is powered off. Using the pro- posed method, we successfully retrieve the 128-bit key in ASCON. Our experiments show that the minimum number and the maximum num- ber of queries required are 63 plaintexts and 451 plaintexts, respectively. Moreover, we observe that the number of queries required to mount the attack depends on fault location in the S-box LUT as observed from the plots reporting the minimum number of queries and average number of queries for 100 key values.
Expand
Jorge Nakahara Jr
ePrint Report ePrint Report
This paper studies an extension of the Linear Approximation Table (LAT) of vectorial Boolean mappings (also known as Substitution boxes) used in Linear Cryptanalysis (LC). This extended table is called NonLinear Approximation Table (NLAT).
Expand
Hasan Ozgur Cildiroglu, Oguz Yayla
ePrint Report ePrint Report
The advent of quantum computing has profound implications for current technologies, offering advancements in optimization while posing significant threats to cryptographic algorithms. Public-key cryptosystems relying on prime factorization or discrete logarithms are particularly vulnerable, whereas block ciphers (BCs) remain secure through increased key lengths. In this study, we introduce a novel quantum implementation of SLIM, a lightweight block cipher optimized for 32-bit plaintext and an 80-bit key, based on a Feistel structure. This implementation distinguishes itself from other BC quantum implementations in its class (64–128-bit) by utilizing a minimal number of qubits while maintaining robust cryptographic strength and efficiency. By employing an innovative design that minimizes qubit usage, this work highlights SLIM’s potential as a resource-efficient and secure candidate for quantum-resistant encryption protocols.
Expand
Zhongming Wang, Tao Xiang, Xiaoguo Li, Biwen Chen, Guomin Yang, Chuan Ma, Robert H. Deng
ePrint Report ePrint Report
Encrypted messaging systems obstruct content moderation, although they provide end-to-end security. As a result, misinformation proliferates in these systems, thereby exacerbating online hate and harassment. The paradigm of ``Reporting-then-Tracing" shows great potential in mitigating the spread of misinformation. For instance, message traceback (CCS'19) traces all the dissemination paths of a message, while source tracing (CCS'21) traces its originator. However, message traceback lacks privacy preservation for non-influential users (e.g., users who only receive the message once), while source tracing maintains privacy but only provides limited traceability.

In this paper, we initiate the study of impact tracing. Intuitively, impact tracing traces influential spreaders central to disseminating misinformation while providing privacy protection for non-influential users. We introduce noises to hide non-influential users and demonstrate that these noises do not hinder the identification of influential spreaders. Then, we formally prove our scheme's security and show it achieves differential privacy protection for non-influential users. Additionally, we define three metrics to evaluate its traceability, correctness, and privacy using real-world datasets. The experimental results show that our scheme identifies the most influential spreaders with accuracy from 82% to 99% as the amount of noise varies. Meanwhile, our scheme requires only a 6-byte platform storage overhead for each message while maintaining a low messaging latency (< 0.25ms).
Expand
Ben Fisch, Zeyu Liu, Psi Vesely
ePrint Report ePrint Report
We present Orbweaver, a plausibly post-quantum functional commitment for linear relations that achieves quasilinear prover time together with $O(\log n)$ proof size and polylogarithmic verifier time. Orbweaver enables evaluation of linear functions on committed vectors over cyclotomic rings and the integers. It is extractable, preprocessing, non-interactive, structure-preserving, and supports compact public proof aggregation. The security of our scheme is based on the $k$-$R$-ISIS assumption (and its knowledge counterpart), whereby we require a trusted setup to generate a universal structured reference string. We use Orbweaver to construct succinct univariate and multilinear polynomial commitments.

Concretely, our scheme has smaller proofs than most other succinct post-quantum arguments for large statements. For binary vectors of length $2^{30}$ we achieve $302$KiB linear map evaluation proofs with evaluation binding, and $1$MiB proofs when extractability is required; for $32$-bit integers these sizes are $494$KiB and $1.6$MiB, respectively.
Expand
Josh Beal, Ben Fisch
ePrint Report ePrint Report
Pairing-based arguments offer remarkably small proofs and space-efficient provers, but aggregating such proofs remains costly. Groth16 SNARKs and KZG polynomial commitments are prominent examples of this class of arguments. These arguments are widely deployed in decentralized systems, with millions of proofs generated per day. Recent folding schemes have greatly reduced the cost of proving incremental computations, such as batch proof verification. However, existing constructions require encoding pairing operations in generic constraint systems, leading to high prover overhead. In this work, we introduce Mira, a folding scheme that directly supports pairing-based arguments. We construct this folding scheme by generalizing the framework in Protostar to support a broader class of special-sound protocols. We demonstrate the versatility and efficiency of this framework through two key applications: Groth16 proof aggregation and verifiable ML inference. Mira achieves 5.8x faster prover time and 9.7x lower memory usage than the state-of-the-art proof aggregation system while maintaining a constant-size proof. To improve the efficiency of verifiable ML inference, we provide a new lincheck protocol with a verifier degree that is independent of the matrix order. We show that Mira scales effectively to larger models, overcoming the memory bottlenecks of current schemes.
Expand

13 December 2024

Borja Balle, James Bell, Albert Cheu, Adria Gascon, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, Thomas Steinke
ePrint Report ePrint Report
Differentially private (DP) heavy-hitter detection is an important primitive for data analysis. Given a threshold $t$ and a dataset of $n$ items from a domain of size $d$, such detection algorithms ignore items occurring fewer than $t$ times while identifying items occurring more than $t+\Delta$ times; we call $\Delta$ the error margin. In the central model where a curator holds the entire dataset, $(\varepsilon,\delta)$-DP algorithms can achieve error margin $\Theta(\frac 1 \varepsilon \log \frac 1 \delta)$, which is optimal when $d \gg 1/\delta$. Several works, e.g., Poplar (S&P 2021), have proposed protocols in which two or more non-colluding servers jointly compute the heavy hitters from inputs held by $n$ clients. Unfortunately, existing protocols suffer from an undesirable dependence on $\log d$ in terms of both server efficiency (computation, communication, and round complexity) and accuracy (i.e., error margin), making them unsuitable for large domains (e.g., when items are kB-long strings, $\log d \approx 10^4$). We present hash-prune-invert (HPI), a technique for compiling any heavy-hitter protocol with the $\log d$ dependencies mentioned above into a new protocol with improvements across the board: computation, communication, and round complexity depend (roughly) on $\log n$ rather than $\log d$, and the error margin is independent of $d$. Our transformation preserves privacy against an active adversary corrupting at most one of the servers and any number of clients. We apply HPI to an improved version of Poplar, also introduced in this work, that improves Poplar's error margin by roughly a factor of $\sqrt{n}$ (regardless of $d$). Our experiments confirm that the resulting protocol improves efficiency and accuracy for large $d$.
Expand
Charanjit S Jutla
ePrint Report ePrint Report
In this work we state and prove an abstract version of the multi-forking lemma of Pointcheval and Stern from EUROCRYPT'96. Earlier, Bellare and Neven had given an abstract version of forking lemma for two-collisions (CCS'06). While the original purpose of the forking lemma was to prove security of signature schemes in the random oracle methodology, the abstract forking lemma can be used to obtain security proofs for multi-signatures, group signatures, and compilation of interactive protocols under the Fiat-Shamir random-oracle methodology.
Expand
Pierrick Méaux, Tim Seuré, Deng Tang
ePrint Report ePrint Report
The Hidden Weight Bit Function (HWBF) has drawn considerable attention for its simplicity and cryptographic potential. Despite its ease of implementation and favorable algebraic properties, its low nonlinearity limits its direct application in modern cryptographic designs. In this work, we revisit the HWBF and propose a new weightwise quadratic variant obtained by combining the HWBF with a bent function. This construction offers improved cryptographic properties while remaining computationally efficient. We analyze the balancedness, nonlinearity, and other criteria of this function, presenting theoretical bounds and experimental results to highlight its advantages over existing functions in similar use cases. The different techniques we introduce to study the nonlinearity of this function also enable us to bound the nonlinearity of a broad family of weightwise quadratic functions, both theoretically and practically. We believe these methods are of independent interest.
Expand
Tianshi Xu, Shuzhang Zhong, Wenxuan Zeng, Runsheng Wang, Meng Li
ePrint Report ePrint Report
Private deep neural network (DNN) inference based on secure two-party computation (2PC) enables secure privacy protection for both the server and the client. However, existing secure 2PC frameworks suffer from a high inference latency due to enormous communication. As the communication of both linear and non-linear DNN layers reduces with the bit widths of weight and activation, in this paper, we propose PrivQuant, a framework that jointly optimizes the 2PC-based quantized inference protocols and the network quantization algorithm, enabling communication-efficient private inference. PrivQuant proposes DNN architecture-aware optimizations for the 2PC protocols for communication-intensive quantized operators and conducts graph-level operator fusion for communication reduction. Moreover, PrivQuant also develops a communication-aware mixed precision quantization algorithm to improve the inference efficiency while maintaining high accuracy. The network/protocol co-optimization enables PrivQuant to outperform prior-art 2PC frameworks. With extensive experiments, we demonstrate PrivQuant reduces communication by $11\times, 2.5\times \mathrm{and}~ 2.8\times$, which results in $8.7\times, 1.8\times ~ \mathrm{and}~ 2.4\times$ latency reduction compared with SiRNN, COINN, and CoPriv, respectively.
Expand
Akshit Aggarwal
ePrint Report ePrint Report
Private set intersection (PSI) allows any two parties (say client and server) to jointly compute the intersection of their sets without revealing anything else. Fully homomorphic encryption (FHE)-based PSI is a cryptographic solution to implement PSI-based protocols. Most FHE-based PSI protocols implement hash function approach and oblivious transfer approach. The main limitations of their protocols are 1) high communication complexity, that is, $O(xlogy)$ (where $x$ is total number of elements on client side, and $y$ is total number of elements on server side), and 2) high memory usage due to SIMD packing for encrypting large digit numbers. In this work, we design a novel tree-based approach to store the large digit numbers that achieves less communication complexity, that is, $O(|d|^{2})$ (where $d$ is digits of a mobile number). Later we implement our protocol using Tenseal library. Our designed protocol opens the door to find the common elements with less communication complexity and less memory usage.
Expand
◄ Previous Next ►