IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
01 March 2024
Yassine Hamoudi, Qipeng Liu, Makrand Sinha
Collision-resistant hashing, a fundamental primitive in modern cryptography, ensures that there is no efficient way to find distinct inputs that produce the same hash value. This property underpins the security of various cryptographic applications, making it crucial to understand its complexity. The complexity of this problem is well-understood in the classical setting and $\Theta(N^{1/2})$ queries are needed to find a collision. However, the advent of quantum computing has introduced new challenges since quantum adversaries - equipped with the power of quantum queries - can find collisions much more efficiently. Brassard, Höyer and Tapp and Aaronson and Shi established that full-scale quantum adversaries require $\Theta(N^{1/3})$ queries to find a collision, prompting a need for longer hash outputs, which impacts efficiency in terms of the key lengths needed for security.
This paper explores the implications of quantum attacks in the Noisy-Intermediate Scale Quantum (NISQ) era. In this work, we investigate three different models for NISQ algorithms and achieve tight bounds for all of them: (1) A hybrid algorithm making adaptive quantum or classical queries but with a limited quantum query budget, or (2) A quantum algorithm with access to a noisy oracle, subject to a dephasing or depolarizing channel, or (3) A hybrid algorithm with an upper bound on its maximum quantum depth; i.e., a classical algorithm aided by low-depth quantum circuits.
In fact, our results handle all regimes between NISQ and full-scale quantum computers. Previously, only results for the pre-image search problem were known for these models by Sun and Zheng, Rosmanis, Chen, Cotler, Huang and Li while nothing was known about the collision finding problem.
Along with our main results, we develop an information-theoretic framework for recording query transcripts of quantum-classical algorithms. The main feature of this framework is that it allows us to record queries in two incompatible bases - classical queries in the standard basis and quantum queries in the Fourier basis - consistently. We call the framework the hybrid compressed oracle as it naturally interpolates between the classical way of recording queries and the compressed oracle framework of Zhandry for recording quantum queries.
This paper explores the implications of quantum attacks in the Noisy-Intermediate Scale Quantum (NISQ) era. In this work, we investigate three different models for NISQ algorithms and achieve tight bounds for all of them: (1) A hybrid algorithm making adaptive quantum or classical queries but with a limited quantum query budget, or (2) A quantum algorithm with access to a noisy oracle, subject to a dephasing or depolarizing channel, or (3) A hybrid algorithm with an upper bound on its maximum quantum depth; i.e., a classical algorithm aided by low-depth quantum circuits.
In fact, our results handle all regimes between NISQ and full-scale quantum computers. Previously, only results for the pre-image search problem were known for these models by Sun and Zheng, Rosmanis, Chen, Cotler, Huang and Li while nothing was known about the collision finding problem.
Along with our main results, we develop an information-theoretic framework for recording query transcripts of quantum-classical algorithms. The main feature of this framework is that it allows us to record queries in two incompatible bases - classical queries in the standard basis and quantum queries in the Fourier basis - consistently. We call the framework the hybrid compressed oracle as it naturally interpolates between the classical way of recording queries and the compressed oracle framework of Zhandry for recording quantum queries.
Caicai Chen, Chris Jones
Hudoba proposed a public key encryption (PKE) scheme and conjectured its security to be based on the Planted Clique problem. In this note, we show that this scheme is not secure. We do so by devising an efficient algorithm for the even neighbor independent set problem proposed by Hudoba. This leaves open the possibility of building PKE based on Planted Clique.
Qi Feng, Kang Yang, Kaiyi Zhang, Xiao Wang, Yu Yu, Xiang Xie, Debiao He
EdDSA, standardized by both IRTF and NIST, is a variant of the well-known Schnorr signature based on Edwards curves, and enjoys the benefit of statelessly and deterministically deriving nonces (i.e., it does not require reliable source of randomness or state continuity). Recently, NIST calls for multi-party threshold EdDSA signatures in one mode of deriving nonce statelessly and deterministically and verifying such derivation via zero-knowledge (ZK) proofs. Multi-party full-threshold EdDSA signatures in the dishonest-majority malicious setting have the advantage of strong security guarantee, and specially cover the two-party case. However, it is challenging to translate the stateless and deterministic benefit of EdDSA to the multi-party setting, as no fresh randomness is available for the protocol execution.
We present the notion of information-theoretic message authenticated codes (IT-MACs) over groups in the multi-verifier setting, and adopt the recent pseudorandom correlation function (PCF) to generate IT-MACs statelessly and deterministically. Furthermore, we generalize the two-party IT-MACs-based ZK protocol by Baum et al. (Crypto'21) into the multi-verifier setting, which may be of independent interest. Together with multi-verifier extended doubly-authenticated bits (mv-edabits) with errors, we design a multi-verifier zero-knowledge (MVZK) protocol to derive nonces statelessly and deterministically. Building upon the MVZK protocol, we propose a stateless deterministic multi-party EdDSA signature, tolerating all-but-one malicious corruptions. Compared to the state-of-the-art multi-party EdDSA signature by Garillot et al. (Crypto'21), we improve communication cost by a factor of $61\times$, at the cost of increasing computation cost by about $2.25\times$ and requiring three extra rounds.
We present the notion of information-theoretic message authenticated codes (IT-MACs) over groups in the multi-verifier setting, and adopt the recent pseudorandom correlation function (PCF) to generate IT-MACs statelessly and deterministically. Furthermore, we generalize the two-party IT-MACs-based ZK protocol by Baum et al. (Crypto'21) into the multi-verifier setting, which may be of independent interest. Together with multi-verifier extended doubly-authenticated bits (mv-edabits) with errors, we design a multi-verifier zero-knowledge (MVZK) protocol to derive nonces statelessly and deterministically. Building upon the MVZK protocol, we propose a stateless deterministic multi-party EdDSA signature, tolerating all-but-one malicious corruptions. Compared to the state-of-the-art multi-party EdDSA signature by Garillot et al. (Crypto'21), we improve communication cost by a factor of $61\times$, at the cost of increasing computation cost by about $2.25\times$ and requiring three extra rounds.
Douglas Stebila
The iMessage PQ3 protocol is an end-to-end encrypted messaging protocol designed for exchanging data in long-lived sessions between two devices. It aims to provide classical and post-quantum confidentiality for forward secrecy and post-compromise secrecy, as well as classical authentication. Its initial authenticated key exchange is constructed from digital signatures plus elliptic curve Diffie–Hellman and post-quantum key exchanges; to derive per-message keys on an ongoing basis, it employs an adaptation of the Signal double ratchet that includes a post-quantum key encapsulation mechanism. This paper presents the cryptographic details of the PQ3 protocol and gives a reductionist security analysis by adapting the multi-stage key exchange security analysis of Signal by Cohn-Gordon et al. (J. Cryptology, 2020). The analysis shows that PQ3 provides confidentiality with forward secrecy and post-compromise security against both classical and quantum adversaries, in both the initial key exchange as well as the continuous rekeying phase of the protocol.
Kai-Min Chung, Eli Goldin, Matthew Gray
Recent work has introduced the "Quantum-Computation Classical-Communication"
(QCCC) (Chung et. al.) setting for cryptography. There has been some evidence that
One Way Puzzles (OWPuzz) are the natural central cryptographic primitive for this
setting (Khurana and Tomer). For a primitive to be considered central it should
have several characteristics. It should be well behaved (which for this paper we will
think of as having amplification, combiners, and universal constructions); it should
be implied by a wide variety of other primitives; and it should be equivalent to some
class of useful primitives. We present combiners, correctness and security amplifica-
tion, and a universal construction for OWPuzz. Our proof of security amplification
uses a new and cleaner version construction of EFI from OWPuzz (in comparison to
the result of Khurana and Tomer) that generalizes to weak OWPuzz and is the most
technically involved section of the paper. It was previously known that OWPuzz are
implied by other primitives of interest including commitments, symmetric key encryp-
tion, one way state generators (OWSG), and therefore pseudorandom states (PRS).
However we are able to rule out OWPuzz’s equivalence to many of these primitives
by showing a black box separation between general OWPuzz and a restricted class
of OWPuzz (those with efficient verification, which we call EV − OWPuzz). We then
show that EV − OWPuzz are also implied by most of these primitives, which separates
them from OWPuzz as well. This separation also separates extending PRS from highly
compressing PRS answering an open question of Ananth et. al.
Pratish Datta, Jiaxin Guan, Alexis Korb, Amit Sahai
This paper introduces the first adaptively secure streaming functional encryption (sFE) scheme for P/Poly. sFE stands as an evolved variant of traditional functional encryption (FE), catering specifically to contexts with vast and/or dynamically evolving data sets. sFE is designed for applications where data arrives in a streaming fashion and is computed on in an iterative manner as the stream arrives. Unlike standard FE, in sFE: (1) encryption is possible without knowledge of the full data set, (2) partial decryption is possible given only a prefix of the input.
Guan, Korb, and Sahai introduced this concept in their recent publication [CRYPTO 2023], where they constructed an sFE scheme for P/Poly using a compact standard FE scheme for the same. However, their sFE scheme only achieved semi-adaptive-function-selective security, which constrains the adversary to obtain all functional keys prior to seeing any ciphertext for the challenge stream. This limitation severely limits the scenarios where sFE can be applied, and therefore fails to provide a suitable theoretical basis for sFE.
In contrast, the adaptive security model empowers the adversary to arbitrarily interleave requests for functional keys with ciphertexts related to the challenge stream. Guan, Korb, and Sahai identified achieving adaptive security for sFE as the key question left open by their work.
We resolve this open question positively by constructing an adaptively secure sFE construction from indistinguishability obfuscation for P/Poly and injective PRGs. By combining our work with that of Jain, Lin, and Sahai [STOC 2021, EUROCRYPT 2022], we obtain the first adaptively secure sFE scheme for P/Poly based on sub-exponential hardness of well-studied computational problems
Lev Soukhanov
Inspired by range-check trick from recent Latticefold paper we construct elliptic-curve based IVC capable of simulating non-native arithmetic efficiently.
We explain the general principle (which can be applied to both Protostar and Hypernova), and describe the Wrongfield ARithmetic for Protostar folding in details.
Our construction supports circuits over mutilple non-native fields simultaneously and allows interfacing between them using range-checked elements.
WARPfold can be used to warp between different proof systems and construct folding schemes over curves not admitting a dual partner (such as BLS12-381).
We explain the general principle (which can be applied to both Protostar and Hypernova), and describe the Wrongfield ARithmetic for Protostar folding in details.
Our construction supports circuits over mutilple non-native fields simultaneously and allows interfacing between them using range-checked elements.
WARPfold can be used to warp between different proof systems and construct folding schemes over curves not admitting a dual partner (such as BLS12-381).
Felicitas Hörmann, Wessel van Woerden
FuLeeca is a signature scheme submitted to the recent NIST call for additional signatures. It is an efficient hash-and-sign scheme based on quasi-cyclic codes in the Lee metric and resembles the lattice-based signature Falcon. FuLeeca proposes a so-called concentration step within the signing procedure to avoid leakage of secret-key information from the signatures. However, FuLeeca is still vulnerable to learning attacks, which were first observed for lattice-based schemes. We present three full key-recovery attacks by exploiting the proximity of the code-based FuLeeca scheme to lattice-based primitives.
More precisely, we use a few signatures to extract an $n/2$-dimensional circulant sublattice of the given length-$n$ code, that still contains the exceptionally short secret-key vector. This significantly reduces the classical attack cost and, in addition, leads to a full key recovery in quantum-polynomial time. Furthermore, we exploit a bias in the concentration procedure to classically recover the full key for any security level with at most 175,000 signatures in less than an hour.
Xiaoyang Dong, Jian Guo, Shun Li, Phuong Pham, Tianyu Zhang
The Nostradamus attack was originally proposed as a security vulnerability for a hash function by Kelsey and Kohno at EUROCRYPT 2006. It requires the attacker to commit to a hash value y of an iterated hash function H. Subsequently, upon being provided with a message prefix P, the adversary’s task is to identify a suffix S such that H(P||S) equals y. Kelsey and Kohno demonstrated a herding attack requiring $O(\sqrt{n}\cdot 2^{2n/3})$ evaluations of the compression function of H, where n represents the output and state size of the hash, placing this attack between preimage attacks and collision searches in terms of complexity. At ASIACRYPT 2022, Benedikt et al. transform Kelsey and Kohno’s attack into a quantum variant, decreasing the time complexity from $O(\sqrt{n}\cdot 2^{2n/3})$ to $O(\sqrt[3]{n}\cdot 2^{3n/7})$. At ToSC 2023, Zhang et al. proposed the first dedicated Nostradamus attack on AES-like hashing in both classical and quantum settings. In this paper, we have made revisions to the multi-target technique incorporated into the meet-in-the-middle automatic search framework. This modification leads to a decrease in time complexity during the online linking phase, effectively reducing the overall attack time complexity in both classical and quantum scenarios. Specifically, we can achieve more rounds in the classical setting and reduce the time complexity for the same round in the quantum setting.
Zahra Ahmadian, Akram Khalesi, Dounia M'foukh, Hossein Moghimi, María Naya-Plasencia
In this paper, we extend the applicability of differential meet-
in-the-middle attacks, proposed at Crypto 2023, to truncated differen-
tials, and in addition, we introduce three new ideas to improve this type
of attack: we show how to add longer structures than the original pa-
per, we show how to improve the key recovery steps by introducing some
probability in them, and we combine this type of attacks with the state-
test technique, that was introduced in the context of impossible differ-
ential attacks. Furthermore, we have developed a MILP-based tool to
automate the search for a truncated differential-MITM attack with op-
timized overall complexity, incorporating some of the proposed improve-
ments. Thanks to this, we can build the best known attacks on the cipher
CRAFT, reaching 23 rounds against 21 previously; we provide a new at-
tack on 23-round SKINNY-64-192, and we improve the best attacks on
SKINNY-128-384.
27 February 2024
Yingxin Li, Fukang Liu, Gaoli Wang
As an ISO/IEC standard, the hash function RIPEMD-160 has been used to generate the Bitcoin address with SHA-256. However, due to the complex double-branch structure of RIPEMD-160, the best collision attack only reaches 36 out of 80 steps of RIPEMD-160, and the best semi-free-start (SFS) collision attack only reaches 40 steps. To improve the 36-step collision attack proposed at EUROCRYPT 2023, we explored the possibility of using different message differences to increase the number of attacked steps, and we finally identified one choice allowing a 40-step collision attack. To find the corresponding 40-step differential characteristic, we re-implement the MILP-based method to search for signed differential characteristics with SAT/SMT. As a result, we can find a colliding message pair for 40-step RIPEMD-160 in practical time, which significantly improves the best collision attack on RIPEMD-160. For the best SFS collision attack published at ToSC 2019, we observe that the bottleneck is the probability of the right-branch differential characteristics as they are fully uncontrolled in the message modification. To address this issue, we utilize our SAT/SMT-based tool to search for high-probability differential characteristics for the right branch. Consequently, we can mount successful SFS collision attacks on 41, 42 and 43 steps of RIPEMD-160, thus significantly improving the SFS collision attacks. In addition, we also searched for a 44-step differential characteristic, but the differential probability is too low to allow a meaningful SFS collision attack.
Yingxin Li, Fukang Liu, Gaoli Wang
The SHA-2 family including SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224 and SHA512/256 is a U.S. federal standard pub-
lished by NIST. Especially, there is no doubt that SHA-256 is one of the
most important hash functions used in real-world applications. Due to
its complex design compared with SHA-1, there is almost no progress
in collision attacks on SHA-2 after ASIACRYPT 2015. In this work, we
retake this challenge and aim to significantly improve collision attacks
on the SHA-2 family. First, we observe from many existing attacks on
SHA-2 that the current advanced tool to search for SHA-2 characteristics
has reached the bottleneck. Specifically, longer differential characteristics
could not be found, and this causes that the collision attack could not
reach more steps. To address this issue, we adopt Liu et al.’s MILP-based
method and implement it with SAT/SMT for SHA-2, where we also add
more techniques to detect contradictions in SHA-2 characteristics. This
answers an open problem left in Liu et al.’s paper to apply the technique
to SHA-2. With this SAT/SMT-based tool, we search for SHA-2 charac-
teristics by controlling its sparsity in a dedicated way. As a result, we
successfully find the first practical semi-free-start (SFS) colliding message
pair for 39-step SHA-256, improving the best 38-step SFS collision attack
published at EUROCRYPT 2013. In addition, we also report the first
practical free-start (FS) collision attack on 40-step SHA-224, while the
previously best theoretic 40-step attack has time complexity 2110. More-
over, for the first time, we can mount practical and theoretic collision
attacks on 28-step and 31-step SHA-512, respectively, which improve the
best collision attack only reaching 27 steps of SHA-512 at ASIACRYPT
2015. In a word, with new techniques to find SHA-2 characteristics, we
have made some notable progress in the analysis of SHA-2 after the major
achievements made at EUROCRYPT 2013 and ASIACRYPT 2015.
David Cui, Giulio Malavolta, Arthur Mehta, Anand Natarajan, Connor Paddock, Simon Schmidt, Michael Walter, Tina Zhang
Nonlocal games are a foundational tool for understanding entanglement and constructing quantum protocols in settings with multiple spatially separated quantum devices. In this work, we continue the study initiated by Kalai et al. (STOC '23) of compiled nonlocal games, played between a classical verifier and a single cryptographically limited quantum device. Our main result is that the compiler proposed by Kalai et al. is sound for any two-player XOR game. A celebrated theorem of Tsirelson shows that for XOR games, the quantum value is exactly given by a semidefinite program, and we obtain our result by showing that the SDP upper bound holds for the compiled game up to a negligible error arising from the compilation. This answers a question raised by Natarajan and Zhang (FOCS '23), who showed soundness for the specific case of the CHSH game. Using our techniques, we obtain several additional results, including (1) tight bounds on the compiled value of parallel-repeated XOR games, (2) operator self-testing statements for any compiled XOR game, and (3) a ``nice" sum-of-squares certificate for any XOR game, from which operator rigidity is manifest.
Augustin Bariant, Aurélien Boeuf, Axel Lemoine, Irati Manterola Ayala, Morten Øygarden, Léo Perrin, Håvard Raddum
In this paper, we present a new type of algebraic attack that applies to many recent arithmetization-oriented families of permutations, such as those used in Griffin, Anemoi, ArionHash, and XHash8, whose security relies on the hardness of the constrained-input constrained-output (CICO) problem. We introduce the FreeLunch approach: the monomial ordering is chosen so that the natural polynomial system encoding the CICO problem already is a Gröbner basis. In addition, we present a new dedicated resolution algorithm for FreeLunch systems of complexity lower than applicable state-of-the-art FGLM algorithms.
We show that the FreeLunch approach challenges the security of fullround instances of Anemoi, Arion and Griffin. We confirm these theoretical results with experimental results on those three permutations. In particular, using the FreeLunch attack combined with a new technique to bypass 3 rounds of Griffin, we recover a CICO solution for 7 out of 10 rounds of Griffin in less than four hours on one core of AMD EPYC 7352 (2.3GHz).
Maria Ferrara, Antonio Tortora, Maria Tota
Torus Fully Homomorphic Encryption (TFHE) is a probabilistic cryptosytem over the real torus which allows one to operate directly on encrypted data without first decrypting them. We present an aggregation protocol based on a variant of TFHE for computing the sum of sensitive data, working only with the corresponding ciphertexts. Our scheme is an ideal choice for a system of smart meters - electronic devices for measuring energy consumption - that demands consumers’
privacy. In contrast to some other solutions, our proposal does not require any communication among smart meters and it is quantum-safe.
Guoqing Zhou, Maozhi Xu
At EUROCRYPT’23, Castryck and Decru, Maino et al., and Robert present efficient attacks against supersingular isogeny Diffie-Hellman key exchange protocol (SIDH). Drawing inspiration from these attacks, Andrea Basso, Luciano Maino, and Giacomo Pope introduce FESTA, an isogeny-based trapdoor function, along with a corresponding IND-CCA secure public key encryption (PKE) protocol at ASIACRYPT’23. FESTA incorporates either a diagonal or circulant matrix into the secret key to mask torsion points.
In this paper, we employ a side-channel attack to construct an auxiliary verification oracle. By querying this oracle, we propose an adaptive attack strategy to recover the secret key in FESTA when the secret matrix is circulant. Compared with existing attacks, our strategy is more efficient and formal. Leveraging these findings, we implement our attack algorithms to recover the circulant matrix in secret key. Finally, we demonstrate that if the secret matrix is circulant, then the adversary can successfully recover FESTA’s secret key with a polynomial number of decryption machine queries. Consequently, our paper illustrates that FESTA PKE protocol with secret circulant matrix does not achieve IND-CCA security.
Ling Song, Qianqian Yang, Yincen Chen, Lei Hu, Jian Weng
In differential-like attacks, the process typically involves extending a distinguisher forward and backward with probability 1 for some rounds and recovering the key involved in the extended part. Particularly in rectangle attacks, a holistic key recovery strategy can be employed to yield the most efficient attacks tailored to a given distinguisher. In this paper, we treat the distinguisher and the extended part as an integrated entity and give a one-step framework for finding rectangle attacks with the purpose of reducing the overall complexity or attacking more rounds. In this framework, we propose to allow probabilistic differential propagations in the extended part and incorporate the holistic recovery strategy. Additionally, we introduce the ``split-and-bunch technique'' to further reduce the time complexity. Beyond rectangle attacks, we extend these foundational concepts to encompass differential attacks as well. To demonstrate the efficiency of our framework, we apply it to Deoxys-BC-384, SKINNY, ForkSkinny, and CRAFT, achieving a series of refined and improved rectangle attacks and differential attacks. Notably, we obtain the first 15-round attack on Deoxys-BC-384, narrowing its security margin to only one round. Furthermore, our differential attack on CRAFT extends to 23 rounds, covering two more rounds than the previous best attacks.
Yang Gao
Authenticated Encryption with Associated Data (AEAD) is a trend in applied cryptography because it combine confidentiality, integrity, and authentication into one algorithm and is more efficient than using block ciphers and hash functions separately. The Ascon algorithm, as the winner in both the CAESAR competition and the NIST LwC competition, will soon become the AEAD standard for protecting the Internet of Things and micro devices with limited computing resources. We propose a partial differential fault analysis (PDFA) technology for the Ascon algorithm, using stuck-at fault and random-nibble fault models respectively. Theoretically, after 9.9 full-round fault injections or 263 single nibble fault injections, 128-bit key can be completely recovered. In addition, we conducted the first discussion of this analysis method under different nonce configurations. In the Nonce-respect case, an average of 130 additional Tag queries are required to complete the guessing of the faulty tag, afterwards equating this case with the Nonce-misuse case. Subsequent experimental results proved the correctness of the theoretical model. Finally we discuss some countermeasures against proposed attacks, and we propose a new S-box that can be used to replace the existing S-box in ASCON to render PDFA ineffective.
Jiahui He, Kai Hu, Hao Lei, Meiqin Wang
The cube attack extracts the information of secret key bits by recovering the coefficient called superpoly in the output bit with respect to a subset of plaintexts/IV, which is called a cube. While the division property provides an efficient way to detect the structure of the superpoly, superpoly recovery could still be prohibitively costly if the number of rounds is sufficiently high. In particular, Core Monomial Prediction (CMP) was proposed at ASIACRYPT 2022 as a scaled-down version of Monomial Prediction (MP), which sacrifices accuracy for efficiency but ultimately gets stuck at 848 rounds of \trivium.
In this paper, we provide new insights into CMP by elucidating the algebraic meaning to the core monomial trails. We prove that it is sufficient to recover the superpoly by extracting all the core monomial trails, an approach based solely on CMP, thus demonstrating that CMP can achieve perfect accuracy as MP does. We further reveal that CMP is still MP in essence, but with variable substitutions on the target function. Inspired by the divide-and-conquer strategy that has been widely used in previous literature, we design a meet-in-the-middle (MITM) framework, in which the CMP-based approach can be embedded to achieve a speedup.
To illustrate the power of these new techniques, we apply the MITM framework to \trivium, \grain and \kreyvium. As a result, not only can the previous computational cost of superpoly recovery be reduced (e.g., 5x faster for superpoly recovery on 192-round \grain), but we also succeed in recovering superpolies for up to 851 rounds of \trivium and up to 899 rounds of \kreyvium. This surpasses the previous best results by respectively 3 and 4 rounds. Using the memory-efficient M\"obius transform proposed at EUROCRYPT 2021, we can perform key recovery attacks on target ciphers, even though the superpoly may contain over $2^{40}$ monomials. This leads to the best cube attacks on the target ciphers.
In this paper, we provide new insights into CMP by elucidating the algebraic meaning to the core monomial trails. We prove that it is sufficient to recover the superpoly by extracting all the core monomial trails, an approach based solely on CMP, thus demonstrating that CMP can achieve perfect accuracy as MP does. We further reveal that CMP is still MP in essence, but with variable substitutions on the target function. Inspired by the divide-and-conquer strategy that has been widely used in previous literature, we design a meet-in-the-middle (MITM) framework, in which the CMP-based approach can be embedded to achieve a speedup.
To illustrate the power of these new techniques, we apply the MITM framework to \trivium, \grain and \kreyvium. As a result, not only can the previous computational cost of superpoly recovery be reduced (e.g., 5x faster for superpoly recovery on 192-round \grain), but we also succeed in recovering superpolies for up to 851 rounds of \trivium and up to 899 rounds of \kreyvium. This surpasses the previous best results by respectively 3 and 4 rounds. Using the memory-efficient M\"obius transform proposed at EUROCRYPT 2021, we can perform key recovery attacks on target ciphers, even though the superpoly may contain over $2^{40}$ monomials. This leads to the best cube attacks on the target ciphers.
Leo de Castro, Keewoo Lee
We present VeriSimplePIR, a verifiable version of the state-of-the-art semi-honest SimplePIR protocol. VeriSimplePIR is a stateful verifiable PIR scheme guaranteeing that all queries are consistent with a fixed, well-formed database. It is the first efficient verifiable PIR scheme to not rely on an honest digest to ensure security; any digest, even one produced by a malicious server, is sufficient to commit to some database. This is due to our extractable verification procedure, which can extract the entire database from the consistency proof checked against each response.
Furthermore, VeriSimplePIR ensures this strong security guarantee without compromising the performance of SimplePIR. The online communication overhead is roughly $1.1$-$1.5\times$ SimplePIR, and the online computation time on the server is essentially the same. We achieve this low overhead via a novel one-time preprocessing protocol that generates a reusable proof that can verify any number of subsequent query-response pairs as long as no malicious behavior is detected. As soon as the verification procedure rejects a response from the server, the offline phase must be rerun to compute a new proof. VeriSimplePIR represents an approach to maliciously secure cryptography that is highly optimized for honest parties while maintaining security even in the presence of malicious adversaries.
Furthermore, VeriSimplePIR ensures this strong security guarantee without compromising the performance of SimplePIR. The online communication overhead is roughly $1.1$-$1.5\times$ SimplePIR, and the online computation time on the server is essentially the same. We achieve this low overhead via a novel one-time preprocessing protocol that generates a reusable proof that can verify any number of subsequent query-response pairs as long as no malicious behavior is detected. As soon as the verification procedure rejects a response from the server, the offline phase must be rerun to compute a new proof. VeriSimplePIR represents an approach to maliciously secure cryptography that is highly optimized for honest parties while maintaining security even in the presence of malicious adversaries.