CryptoDB
Patrick Neumann
ORCID: 0000-0003-1624-4256
Publications and invited talks
Year
Venue
Title
2025
ASIACRYPT
The State-Test Technique on Differential Attacks: a 26-Round Attack on CRAFT and Other Applications
Abstract
The state-test technique, originally introduced in the context of impossible-differential cryptanalysis and recently used as an improvement for truncated-differential Meet-in-the-Middle attacks, has proven to be useful for reducing the complexity of attacks. In essence, the idea is to guess parts of the state instead of the key during the key-guessing stage of an attack, ultimately reducing the number of guesses needed.
We generalize the idea of the state-test technique, allowing it to be applied not only to impossible-differential and (truncated-)differential Meet-in-the-Middle, but also to differential and differential-linear cryptanalysis, proposing also a new performant technique exploiting the state-test technique and probabilistic key-recovery. Additionally, we provide insights on the interaction between cipher and difference needed for the state-test technique to be applicable, finding it to be a promising option for many ciphers.
To illustrate our findings, we provide 3 new applications of the state-test technique: we show how it can be used to improve the best known attack on the block cipher Pride, how it can be used to improve a step in the best known attack on Serpent, and use it to present the first known attacks on 24, 25 and 26 rounds of CRAFT (out of 32), improving by up to three rounds over the previous best ones.
2023
EUROCRYPT
Pitfalls and Shortcomings for Decompositions and Alignment
Abstract
In this paper we, for the first time, study the question under which circumstances decomposing a round function of a Substitution-Permutation Network is possible uniquely. More precisely, we provide necessary and sufficient criteria for the non-linear layer on when a decomposition is unique. Our results in particular imply that, when cryptographically strong S-boxes are used, the decomposition is indeed unique.
We then apply our findings to the notion of alignment, pointing out that the previous definition allows for primitives that are both aligned and unaligned simultaneously.
As a second result, we present experimental data that shows that alignment might only have limited impact. For this, we compare aligned and unaligned versions of the cipher PRESENT.
2023
CRYPTO
On Perfect Linear Approximations and Differentials over Two-Round SPNs
Abstract
Recent constructions of (tweakable) block ciphers with an embedded cryptographic backdoor relied on the existence of probability-one differentials or perfect (non-)linear approximations over a reduced-round version of the primitive. In this work, we study how the existence of probability-one differentials or perfect linear approximations over two rounds of a substitution permutation network can be avoided by design. More precisely, we develop criteria on the s-box and the linear layer that guarantee the absence of probability-one differentials for all keys. We further present an algorithm that allows to efficiently exclude the existence of keys for which there exists a perfect linear approximation.
2023
TOSC
Commutative Cryptanalysis Made Practical
Abstract
About 20 years ago, Wagner showed that most of the (then) known techniques used in the cryptanalysis of block ciphers were particular cases of what he called commutative diagram cryptanalysis. However, to the best of our knowledge, this general framework has not yet been leveraged to find concrete attacks.In this paper, we focus on a particular case of this framework and develop commutative cryptanalysis, whereby an attacker targeting a primitive E constructs affine permutations A and B such that E ○ A = B ○ E with a high probability, possibly for some weak keys. We develop the tools needed for the practical use of this technique: first, we generalize differential uniformity into “A-uniformity” and differential trails into “commutative trails”, and second we investigate the commutative behaviour of S-box layers, matrix multiplications, and key additions.Equipped with these new techniques, we find probability-one distinguishers using only two chosen plaintexts for large classes of weak keys in both a modified Midori and in Scream. For the same weak keys, we deduce high probability truncated differentials that can cover an arbitrary number of rounds, but which do not correspond to any high probability differential trails. Similarly, we show the existence of a trade-off in our variant of Midori whereby the probability of the commutative trail can be decreased in order to increase the weak key density. We also show some statistical patterns in the AES super S-box that have a much higher probability than the best differentials, and which hold for a class of weak keys of density about 2−4.5.
2019
EUROCRYPT
bison Instantiating the Whitened Swap-Or-Not Construction
📺
Abstract
We give the first practical instance – bison – of the Whitened Swap-Or-Not construction. After clarifying inherent limitations of the construction, we point out that this way of building block ciphers allows easy and very strong arguments against differential attacks.
Coauthors
- Jules Baudrin (1)
- Christof Beierle (1)
- Anne Canteaut (1)
- Patrick Felke (2)
- Virginie Lallemand (1)
- Baptiste Lambin (1)
- Gregor Leander (4)
- Dounia M'foukh (1)
- María Naya-Plasencia (1)
- Patrick Neumann (5)
- Léo Perrin (1)
- Lukas Stennes (2)
- Friedrich Wiemer (1)