International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Xuyang Song

Publications

Year
Venue
Title
2021
ASIACRYPT
Promise $\Sigma$-protocol: How to Construct Efficient Threshold ECDSA from Encryptions Based on Class Groups 📺
Threshold Signatures allow $n$ parties to share the ability of issuing digital signatures so that any coalition of size at least $t+1$ can sign, whereas groups of $t$ or less players cannot. The currently known class-group-based threshold ECDSA constructions are either inefficient (requiring parallel-repetition of the underlying zero knowledge proof with small challenge space) or requiring rather non-standard assumptions. In this paper, under \emph{standard assumptions} we present efficient threshold ECDSA protocols from encryption schemes based on class groups \emph{without parallel repeating the underlying zero knowledge proof}, yielding a significant efficiency improvement in the key generation over previous constructions (even those based on non-standard assumptions). Along the way we introduce a new notion of \emph{promise} $\Sigma$-protocol that satisfies only a weaker soundness called \emph{promise extractability}. An accepting \emph{promise} $\Sigma$-proof for statements related to class-group-based encryptions does not establish the truth of the statement but provides security guarantees (promise extractability) that are sufficient for our applications. We also show how to simulate homomorphic operations on a (possibly invalid) class-group-based encryption whose correctness has been proven via our \emph{promise} $\Sigma$-protocol. We believe that these techniques are of independent interest and applicable to other scenarios where efficient zero knowledge proofs for statements related to class-group is required.
2018
PKC
On the Security of Classic Protocols for Unique Witness Relations
Yi Deng Xuyang Song Jingyue Yu Yu Chen
We revisit the problem of whether the known classic constant-round public-coin argument/proof systems are witness hiding for languages/distributions with unique witnesses. Though strong black-box impossibility results are known, we provide some less unexpected positive results on the witness hiding security of these classic protocols:We give sufficient conditions on a hard distribution over unique witness NP relation for which all witness indistinguishable protocols (including all public-coin ones, such as ZAPs, Blum protocol and GMW protocol) are indeed witness hiding. We also show a wide range of cryptographic problems with unique witnesses satisfy these conditions, and thus admit constant-round public-coin witness hiding proof system.For the classic Schnorr protocol (for which the distribution of statements being proven seems not to satisfy the above sufficient conditions), we develop an embedding technique and extend the result of Bellare and Palacio to base the witness hiding property of the Schnorr protocol in the standalone setting on a relaxed version of one-more like discrete logarithm (DL) assumption, which essentially assumes there does not exist instance compression scheme for the DL problem, and show that breaking this assumption would lead to some surprising consequences, such as zero knowledge protocols for the AND-DL language with extremely efficient communication and highly non-trivial hash combiner for hash functions based on the DL problem. Similar results hold for the Guillou-Quisquater protocol.

Coauthors

Yu Chen (1)
Yi Deng (2)
Shunli Ma (1)
Hailong Wang (1)
Xiang Xie (1)
Jingyue Yu (1)
Xinxuan Zhang (1)