TCC 2017

$\begin{array}{c} {\bf 15}^{th} \ {\bf IACR} \ {\bf Theory \ of \ Cryptography} \\ {\bf Conference} \end{array}$

https://www.iacr.org/workshops/tcc2017/

Handbook

 $\begin{array}{c} \textbf{November 12}^{th}\textbf{-15}^{th},\ \textbf{2017} \\ \textbf{Baltimore},\ \textbf{USA} \end{array}$

Program Chairs

Yael Kalai (Microsoft Research New England) Leonid Reyzin (Boston University)

General Chair

Abhishek Jain (Johns Hopkins University)

Organizing Committee

Arka Rai Choudhuri (Johns Hopkins University) Anton Dahbura (Johns Hopkins University) Jessica Finkelstein (Johns Hopkins University) Nils Fleischhacker (Johns Hopkins University) Aarushi Goel (Johns Hopkins University) Zhengzhong Jin (Johns Hopkins University) Revelie Niles (Johns Hopkins University)

Platinum Sponsors

Department of Computer Science

Gold Sponsors

Microsoft Research

Silver Sponsors

Program

	Sunday, November 12 (Johns Hopkins Club)
17:30-18:00	Registration
18:00-20:00	Welcome Reception

	Monday, November 13 (Charles Commons Conference Center)
08:55-09:00	Opening Remarks
	Obfuscation
	Limits on the Locality of Pseudorandom Generators (with
09:00-09:20	Applications to Indistinguishability Obfuscation)
	Alex Lombardi and Vinod Vaikuntanathan
	Decomposable Obfuscation: A Framework for Building
09:20-09:40	Applications of Obfuscation From Polynomial Hardness
	Qipeng Liu and Mark Zhandry
	Functional Encryption
00.40 10.00	Functional Encryption for Bounded Collusions, Revisited
09:40-10:00	Shweta Agrawal and Alon Rosen
10:00-10:20	Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited
10:00-10:20	Hoeteck Wee
10:20-10:50	Coffee Break
	Obfuscation and Functional Encryption
10 50 11 10	When does Functional Encryption Imply Obfuscation?
10:50-11:10	Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed
	Delegation
	On Zero-Testable Homomorphic Encryption and Publicly
11:10-11:30	Verifiable Non-Interactive Arguments
	Omer Paneth and Guy N. Rothblum
	Constrained PRFs
11 00 11 50	Private Constrained PRFs (and more) from LWE
11:30-11:50	Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee
11 50 10 10	Constrained Keys For Invertible Pseudorandom Functions
11:50-12:10	Dan Boneh, Sam Kim, and David J. Wu
12:10-13:30	Lunch
	Databases
	Joint slot for
	Can We Access a Database Both Locally and Privately?
1000 10 50	Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters
13:30-13:50	AND
	Towards Doubly Efficient Private Information Retrieval
	Ran Canetti, Justin Holmgren, and Silas Richelson
	Strengthening the Security of Encrypted Databases:
13:50-14:10	Non-Transitive JOINs
	Ilya Mironov, Gil Segev, and Ido Shahaf
	Leakage and tampering
1410 1490	How to Construct a Leakage-Resilient (Stateless) Trusted Party
14:10-14:30	Daniel Genkin, Yuval Ishai, and Mor Weiss
	Blockwise p-Tampering Attacks on Cryptographic Primitives,
14:30-14:50	Extractors, and Learners
	Saeed Mahloujifar and Mohammad Mahmoody
14:50-15:10	Coffee Break
	Block-Chains

	Overcoming Cryptographic Impossibility Results Using
15:10-15:30	Blockchains
	Rishab Goyal and Vipul Goyal
	Hardness of Assumptions
15:30-15:50	On Iterative Collision Search for LPN and Subset Sum
19:50-19:50	Srinivas Devadas, Ling Ren, and Hanshen Xiao
	Can PPAD Hardness be Based on Standard Cryptographic
15:50-16:10	Assumptions?
	Alon Rosen, Gil Segev, and Ido Shahaf
16:10-16:30	Break
	Impossibilities and Barriers
16:30-16:50	Barriers to Black-Box Constructions of Traitor Tracing Systems
10:50-10:50	Bo Tang and Jiapeng Zhang
	On the impossibility of entropy reversal, and its application to
16:50-17:10	zero-knowledge proofs
	Shachar Lovett and Jiapeng Zhang
	Position-Based Cryptography and Multiparty Communication
17:10-17:30	Complexity
	Joshua Brody, Stefan Dziembowski, Sebastian Faust, and Krzysztof Pietrzak

	Tuesday, November 14 (Charles Commons Conference Center)
	Signatures and VRFs
	Joint slot for
09:00-09:20	A Generic Approach to Constructing and Proving Verifiable
	Random Functions
	Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters
	AND
	Verifiable Random Functions from Non-Interactive
	Witness-Indistinguishable Proofs
	Nir Bitansky
	An Equivalence Between Attribute-Based Signatures and
09:20-09:40	Homomorphic Signatures, and New Constructions for Both
	Rotem Tsabary
	On the One-Per-Message Unforgeability of (EC)DSA and its
09:40-10:00	Variants
	Manuel Fersch, Eike Kiltz, and Bertram Poettering
	Fully Homomorphic Encryption
	Batched Multi-hop Multi-key FHE from Ring-LWE with
10:00-10:20	Compact Ciphertext Extension
	Long Chen, Zhenfeng Zhang, and Xueqing Wang
10:20-10:50	Coffee Break
	Encryption
10:50-11:10	The Edited Truth
10.50-11.10	Shafi Goldwasser, Saleet Klein, and Daniel Wichs
11:10-11:30	A Modular Analysis of the Fujisaki-Okamoto Transformation
11.10-11.30	Kathrin Hoevelmanns, Dennis Hofheinz, and Eike Kiltz
11:30-11:50	From Selective IBE to Full IBE and Selective HIBE
11.50-11.50	Nico Döttling and Sanjam Garg
	Multi-Key Authenticated Encryption with Corruptions:
11:50-12:10	Reductions are Lossy
	Tibor Jager, Martijn Stam, Ryan Stanley-Oakes, and Bogdan Warinschi
12:10-13:30	Lunch
	Proofs of Work and Space

	On the Depth-Robustness and Cumulative Pebbling Cost of		
13:30-13:50	Argon2i		
	Jeremiah Blocki and Samson Zhou		
10 50 14 10	Bandwidth Hard Functions for ASIC Resistance		
13:50-14:10	Ling Ren and Srinivas Devadas		
	Moderately Hard Functions: Definition, Instantiations, and		
14:10-14:30	11		
	Joël Alwen and Björn Tackmann		
14:30-14:50	Break		
	Secret Sharing		
	Evolving Secret Sharing: Supporting Dynamic Thresholds and		
14:50-15:10	Robustness		
	Ilan Komargodski and Anat Paskin-Cherniavsky		
	Linear Secret-Sharing Schemes for Forbidden Graph Access		
15:10-15:30	Structures		
	Amos Beimel, Oriol Farràs, Yuval Mintz, and Naty Peter		
15:30-15:50	Near-Optimal Secret Sharing and Error Correcting Codes in ACO		
	Kuan Cheng, Yuval Ishai, and Xin Li		
15:50-16:10	Coffee Break		
	Non-malleable Codes		
16:10-16:30	Inception Makes Non-malleable Codes Stronger		
	Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski Four-state Non-malleable Codes with Explicit Constant Rate		
16:30-16:50			
	Bhavana Kanukurthi, Lakshmibhavana Obbattu, and Sruthi Sekar ORAM		
	Circuit OPRAM: Unifying Statistically and Computationally		
16:50-17:10	Secure ORAMs and OPRAMs		
10.50-17.10	T-H. Hubert Chan and Elaine Shi		
	Aquarium		
17:30-18:30	Transition to the Aquarium		
18:30-19:45	Aquarium Tour and Reception		
10.30-19.43	Invited Talk		
19:45-20:45	Chris Peikert and Alon Rosen		
19:40-20:40			
20.45 22.00	Business Meeting and Rump Session		
20:45-22:00	Business Meeting and Rump Session		

	Wednesday, November 15 (Charles Commons Conference	
	Center)	
	MPC With Few Rounds	
00.00 00.00	On Secure Two-Party Computation in Three Rounds	
09:00-09:20	Prabhanjan Ananth and Abhishek Jain	
00.00.00.40	Four Round Secure Computation without Setup	
09:20-09:40	Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou	
	Joint slot for	
	Delayed-Input Non-Malleable Zero Knowledge and Multi-Party	
	Coin Tossing in Four Rounds	
00.40.40.40	Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti	
09:40-10:10	AND	
	Round-Optimal Secure Two-Party Computation from Trapdoor	
	Permutations	
	Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti	

	Round Optimal Concurrent MPC via Strong Simulation	
10:10-10:30	Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana,	
	and Amit Sahai	
10:30-11:00	Coffee Break	
	Invited Talk	
11 00 10 00	Theory for Society: Fairness in Classification	
11:00-12:00	Cynthia Dwork	
12:00-13:20	Lunch	
	MPC with Fairness	
	Secure Two-Party Computation with Fairness A Necessary	
13:20-13:40	Design Principle	
	Yehuda Lindell and Tal Rabin	
	Designing Fully Secure Protocols for Secure Two-Party	
13:40-14:00	Computation of Constant-Domain Functions	
	Vanesa Daza and Nikolaos Makriyannis	
	UC Secure MPC	
	A Unified Approach to Constructing Black-box UC Protocols in	
11001100	Trusted Setup Models	
14:00-14:20	Susumu Kiyoshima, Huijia Lin, and Muthuramakrishnan	
	Venkitasubramaniam	
14:20-14:40	Break	
	Zero-Knowledge and Nomalleable Protocols	
	Zero-Knowledge and Nomalleable Protocols Resettably-Sound Resettable Zero Knowledge in Constant	
14:40-15:00	Zero-Knowledge and Nomalleable Protocols Resettably-Sound Resettable Zero Knowledge in Constant Rounds	
14:40-15:00	Resettably-Sound Resettable Zero Knowledge in Constant Rounds	
14:40-15:00	Resettably-Sound Resettable Zero Knowledge in Constant	
14:40-15:00 15:00-15:20	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti	
	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial	
	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness	
	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness Dakshita Khurana	
15:00-15:20	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness Dakshita Khurana Zero Knowledge Protocols from Succinct Constraint Detection	
15:00-15:20	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness Dakshita Khurana Zero Knowledge Protocols from Succinct Constraint Detection Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon,	
15:00-15:20 15:20-15:40	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness Dakshita Khurana Zero Knowledge Protocols from Succinct Constraint Detection Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner	
15:00-15:20 15:20-15:40	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness Dakshita Khurana Zero Knowledge Protocols from Succinct Constraint Detection Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner Coffee Break	
15:00-15:20 15:20-15:40 15:40-16:00	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness Dakshita Khurana Zero Knowledge Protocols from Succinct Constraint Detection Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner Coffee Break MPC Tools	
15:00-15:20 15:20-15:40	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness Dakshita Khurana Zero Knowledge Protocols from Succinct Constraint Detection Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner Coffee Break MPC Tools Actively Secure Garbled Circuits with Constant Communication Overhead in the Plain Model	
15:00-15:20 15:20-15:40 15:40-16:00 16:00-16:20	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness Dakshita Khurana Zero Knowledge Protocols from Succinct Constraint Detection Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner Coffee Break MPC Tools Actively Secure Garbled Circuits with Constant Communication	
15:00-15:20 15:20-15:40 15:40-16:00	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness Dakshita Khurana Zero Knowledge Protocols from Succinct Constraint Detection Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner Coffee Break MPC Tools Actively Secure Garbled Circuits with Constant Communication Overhead in the Plain Model Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam Adaptively Indistinguishable Garbled Circuits Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs	
15:00-15:20 15:20-15:40 15:40-16:00 16:00-16:20	Resettably-Sound Resettable Zero Knowledge in Constant Rounds Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti Round Optimal Concurrent Non-Malleability from Polynomial Hardness Dakshita Khurana Zero Knowledge Protocols from Succinct Constraint Detection Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner Coffee Break MPC Tools Actively Secure Garbled Circuits with Constant Communication Overhead in the Plain Model Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam Adaptively Indistinguishable Garbled Circuits	

Venue

Welcome Reception Venue

The welcome reception will be at The Johns Hopkins Club. The reception venue in only a 8 minute walk from the conference hotel.

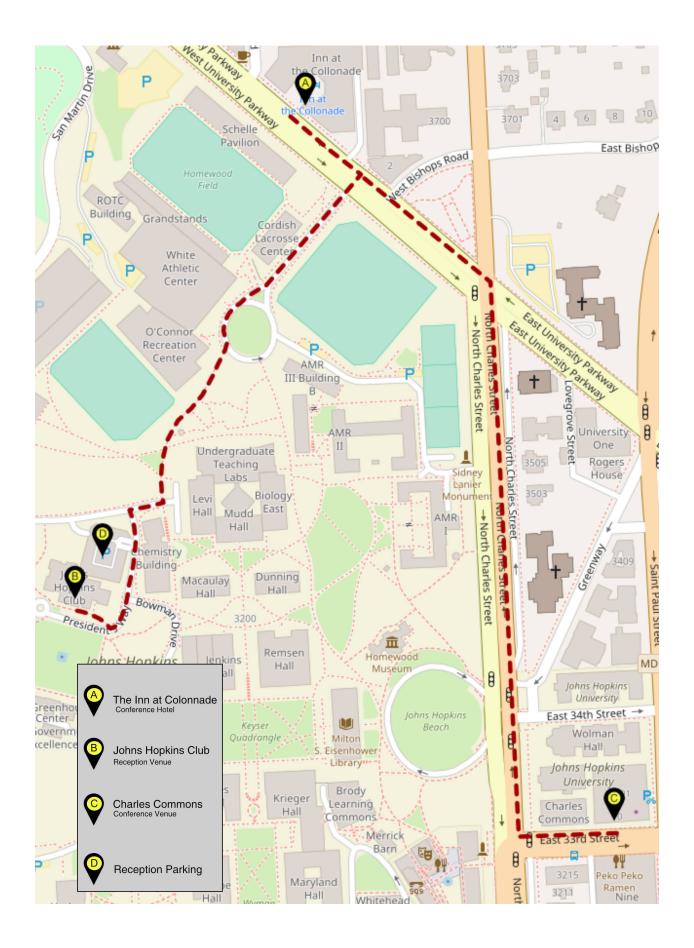
Click here for walking directions from the conference hotel.

Free parking will be available at the Hopkins Club Lot. Additional paid parking is also available at San Martin Garage.

Conference Venue

The conference venue is the Charles Commons Conference Center, Johns Hopkins University. The conference venue in only a 9 minute walk from the conference hotel.

Click here for walking directions from the conference hotel.


Please use the entrance to the building on the 33rd street.

Parking will be available at 9 E. 33 rd Street, Baltimore, MD 21218.

Tuesday Evening Session Venue

The tuesday evening session will be held at the National Aquarium. Travel to the session venue from the conference venue will be provided.

A map of the locations is provided on the next page.

Tourist Information

Sight Seeing

The two most prominent art museums in the city are the Baltimore Museum of Art and the Walters Art Museum. Both have impressive collections, and are free for visitors. While the Baltimore Museum of Art is only a 5 minute walk from the conference venue, the Walters Art Museum is more centrally located in Mt. Vernon. A point of note for both museums is that they are closed on Monday and Tuesday.

Of potentially more interest, but a little further away, is the National Cryptographic Museum. It is about 20 miles south-west of the conference venue.

Moving closer to the harbor, the inner harbor has a collection of Historic ships that are within walking distance of each other.

One of Baltimore's most historic monuments is Fort McHenry for its role in the Battle of Baltimore in the early 19th century. The defense of the fort inspired Francis Scott Key to write a poem later to be known as "The Star-Spangled Banner", the national anthem of the USA.

The Baltimore Water Taxi can be an enjoyable ride to explore the various parts of the inner harbor.

For more details on places to visit in Baltimore, you may have a look at the Baltimore Tourism website.

Dining Suggestions

For dining and drinks, some of the more popular (and best) places are around Hampden, Mt. Vernon, Inner Harbor, Federal Hill and Fells point. Baltimore also has an impressive collection of restaurants in Little Italy, located in downtown Baltimore (close to the Harbor). The recommended neighborhoods closest to the conference hotel are Hampden (1 mile) and Mount Vernon (2 miles). The restaurants closest to the conference hotel are located in Roland Park, and are 1-2 blocks away.

Below are a few places that we recommend.

Drinks:

	Type	Location
De Kleine Duivel	Beer	Hampden
Brewer's Art	Beer	Mount Vernon
Power Plant Live	Beer	Inner Harbor
Max's Taphouse	Beer	Fells Point
The Bluebird Cocktail Room	Cocktails	Hampden
Blue pit BBQ and Whiskey Bar	Cocktails	Hampden
Bookmakers Cocktail Club	Cocktails	Federal Hill
Sugarvale	Cocktails	Mount Vernon
Rye	Cocktails	Fells Point
13.5% Wine Bar	Wine	Hampden

Dining:

	Cuisine	Location
Ouzo Bay	Greek Seafood	Inner Harbor
Rusty Scupper	Seafood	Federal Hill
Thames Street Oyster House	Seafood	Fells Point
Azumi	Japanese	Inner Harbor
Joe Benny's	Focaccia Pizza	Little Italy
Puerto 511	Peruvian	Mount Vernon
Mt. Vernon Marketplace	Food Court	Mount Vernon
Blue pit BBQ and Whiskey Bar	BBQ	Hampden
Woodberry Kitchen	New American	Hampden
La Cuchara	Spanish	Hampden
The Food Market	New American	Hampden

	Cuisine	Location
The Arthouse	Gourmet Pizza	Hampden
Paulie Gee	Gourmet Pizza	Hampden
R-House	Food Court	Remington
Cypriana	Mediterranean	Roland Park
Ambassador	Indian	Roland Park