Verifiable Random Functions from
Weaker Assumptions*

Tibor Jager

Horst Gortz Institute for IT Security
Ruhr-University Bochum
tibor.jager@rub.de

Abstract. The construction of a verifiable random function (VRF) with large in-
put space and full adaptive security from a static, non-interactive complexity as-
sumption, like decisional Diffie-Hellman, has proven to be a challenging task. To
date it is not even clear that such a VRF exists. Most known constructions either
allow only a small input space of polynomially-bounded size, or do not achieve
full adaptive security under a static, non-interactive complexity assumption.

The only known constructions without these restrictions are based on non-static,
so-called “g-type” assumptions, which are parametrized by an integer g. Since
g-type assumptions get stronger with larger g, it is desirable to have g as small
as possible. In current constructions, g is either a polynomial (e.g., Hohenberger
and Waters, Eurocrypt 2010) or at least linear (e.g., Boneh et al., CCS 2010) in
the security parameter.

We show that it is possible to construct relatively simple and efficient verifiable
random functions with full adaptive security and large input space from non-
interactive g-type assumptions, where g is only logarithmic in the security pa-
rameter. Interestingly, our VRF is essentially identical to the verifiable unpre-
dictable function (VUF) by Lysyanskaya (Crypto 2002), but very different from
Lysyanskaya’s VRF from the same paper. Thus, our result can also be viewed as
a new, direct VRF-security proof for Lysyanskaya’s VUFE. As a technical tool, we
introduce and construct balanced admissible hash functions.

1 Introduction

Verifiable random functions. Verifiable random functions (VRFs) can be seen as the
public-key equivalent of pseudorandom functions. Each function V is associated with
a secret key sk and a corresponding public verification key vk. Given sk, an element
X from the domain of Vi, and Y = Vi (X), it is possible to create a non-interactive,
publicly verifiable proof 7 that Y was computed correctly. For security, unique prov-
ability is required. This means that for each X only one unique value Y such that the
statement “Y = Vy;(X)” can be proven may exist. Note that unique provability is a
very strong requirement: not even the party that creates sk (possibly maliciously) may

* ©IACR 2015. This article is the final version of a TCC 2015 paper, submitted by the author
to the IACR and to Springer-Verlag on January 9, 2015. The version published by Springer-
Verlag is available at <DOI not yet known>.

be able to create fake proofs. These additional features should not affect the pseudo-
randomness of the function on other inputs. Verifiable random functions are strongly
related to verifiable unpredictable functions (VUFs), where the weaker notion of un-
predictability instead of pseudorandomness is required.

Their strong properties make VRFs useful for applications like resettable zero-
knowledge proofs [30], lottery systems [31], transaction escrow schemes [26], updat-
able zero-knowledge databases [27], or e-cash [3,4]. VRFs can also be seen as veri-
fiably unique digital signatures (called invariant signatures in [23]), their uniqueness
makes them strongly unforgeable [10, 35].

The difficulty of constructing VRFs. In particular the unique provability requirement
makes it very difficult to construct verifiable random functions. For instance, the natural
attempt of combining a pseudorandom function with a non-interactive zero-knowledge
proof system fails, since zero-knowledge proofs are inherently simulatable, which con-
tradicts uniqueness. More generally, any reduction which attempts to prove pseudoran-
domness of a candidate construction faces the following problem.

— On the one hand, the reduction must be able to compute the unique function value
Y := Vg (X) for preimages X selected by the attacker, along with a proof of
correctness 7. Due to the unique provability, there exists only one unique value Y
such that the statement “Y” = Vi, (X)” can be proven, thus the reduction is not able
to “lie” by outputting false values Y.

Note that this stands in contrast to typical reductions for pseudorandom functions,
like the Naor-Reingold construction [33] for instance, where due to the absence of
proofs the reduction is be able to output incorrect values.

— On the other hand, the reduction must not be able to compute Y* = Vi, (X™*) for
a particular X*, as it must be able to use an attacker that distinguishes Y* from
random to break a complexity assumption.

Most previous works [29,28, 16,17, 1] constructed VRFs with only small input
spaces of polynomially-bounded size.! The only two exceptions are due to Hohenberger
and Waters [25] and Boneh et al. [9], who constructed verifiable random functions with
full adaptive security that allow an input space of exponential size.

VRF's with large input spaces from non-interactive assumptions. Hohenberger and Wa-
ters [25] provided the first fully-secure VRF with exponential-size input space whose
security is based on a non-interactive complexity assumption. The security proof relies
on a g-type assumption, where an algorithm receives as input a list of group elements

1 pa+l

(g’h’gx""ang7 » g 7-~-agz2q,T)€G2q+1XGT

where e : G X G — G is a bilinear map. The assumption is that no efficient algorithm
is able to distinguish T' = e(g, h)** from a random group element with probability
significantly better than 1/2. The proof given in [25] requires that ¢ = O(Q - k), where

! Or, alternatively but usually equivalently, based on interactive complexity assumptions or with
only weaker selective security.

k is the security parameter and @ is the number of function evaluations Vs (X) queried
by the attacker in the security experiment. Note that in particular () can be very large,
as it is only bounded by a polynomial in the security parameter.

The construction of Boneh et al. [9] is based on the assumption where the algorithm
receives as input a list of group elements

(g7hvgz7"'agmq7T) € Gq+2 X GT

and the algorithm has to distinguish 7 = e(g, h)*/* from random. The proof in [9]
requires ¢ = O(k). Is it possible to construct VRFs with large input and full adaptive
security from weaker q-type assumptions?

Our contribution. We construct verifiable random functions with exponential-size input
space, full adaptive security, and based on a g-type assumption with very small q. More
precisely, ¢ = O(log k) depends only logarithmically on the security parameter. The
VREF construction essentially corresponds to the verifiable unpredictable function of
Lysyanskaya [28], which inspired many very similar VRF constructions with either
weaker security or based on stronger assumptions [25, 1, 16].

As a technical tool, we introduce the notion of balanced admissible hash functions
(balanced AHFs), which are standard admissible hash functions [8] with an extra prop-
erty (cf. the explanations below and in Section 4), and may be useful for applications
beyond VRFs. We show how to construct balanced AHFs from codes with suitable
minimal distance.

VRF construction. Let G, Gt be groups with bilinear map e : G x G — G, and let
C : {0,1}* — {0,1}" be a hash function. We construct a VRF with domain {0, 1}*
and range G. The verification key of our VRF consists of C' along with 2n + 2 random
elements of G

vk = (9, R, (9i5) i.j) el x {0.1})

The secret key consists of the discrete logarithms «; ; such that g7 = g; ; for (4, j) €
[n] x {0, 1}.
The function is evaluated on input X € {0, 1}* by first computing

(C1,...,Co)i=C(X) and ax =i,
=1

and finally
Vs (X) :=e(g, h)**
A proof that Vi (X) = e(g, h)** consists of group elements (71, ..., 7,) where
= ﬂ'lajc‘

for i € [n] and with 7y := g. Correctness of proofs is verified with the bilinear map.

Similarity to Lysyanskaya’s VUF. We note that our VRF construction is nearly identical
to a VUF (resp. unique signature) construction of Lysyanskaya [28], but very different
from the VRF construction of [28]. To explain this in more detail, recall that Lysyan-
skaya [28] followed a much more complex approach:

1. Construct a VUF based on a “computational” complexity assumption (in contrast
to a “decisional” complexity assumption)

2. Turn this VUF into a VRF with single-bit output, by using a Goldreich-Levin
hard-core predicate [22]. This step is not as simple as it may appear, because
Micali et al. [29] show in their initial VRF paper that this only yields a VRF
with polynomially-bounded input space (due to the fact that the randomness of the
Goldreich-Levin hard-core predicate must be public to allow verifiability, which in
turn leads to the problems discussed in [34]).

3. Turn this single-bit-VRF into a VRF with many-bit output (still with poly-bounded
input space), by applying a generic construction from [29]. Note that this generic
construction requires many evaluations of the underlying single-bit VRF.

4. In order to extend the VRF to a larger input space, apply another generic tree-
based construction of [29]. Note that again this requires many evaluations of the
underlying VRF.

In contrast, our direct VRF security proof of (essentially) the VUF-construction of
Lysyanskaya yields directly a — in comparison much more simple and efficient — VRF
with exponential-sized input space, adaptive security, and many-bit output. We rely on
the new notion of balanced admissible hash functions in our security analysis.

Our security analysis and the need for balanced AHFs. We prove security under the
qDDH-assumption, which states that given

(g7h7gx7"'7gxq7T)

it is hard to distinguish T’ = e(g, h)qurl from random.
A gDDH-challenge is embedded into the view of the attacker by setting

gij =g
where «; ; & Zyg| is a random blinding term, but only for O(log k) carefully selected

indices (4, 7). This careful embedding essentially partitions the domain {0, 1}* of the
VREF into two sets Aj, X7, such that

— For all values X € X} we have
Ve (X) = e(glTi=o 7i$i7h) and 7; = gtli=o vyl < j<n (1)

where the ; and -y, ; are integers in Z;g| which are known to the reduction. Note
that the polynomials in the exponent of Equations (1) have degree at most g, thus
Ve (X) and 7y, ..., m, can be computed, given the values (g, g%,...,g*") from
the ¢gDDH challenge and the integers ;, 7; ;.

— For all values X* € &) the reduction is able to compute integers ; such that
YV — e(gl_[l-;o ’Yizi’h) . TYa+1

such that if T' = e(g, h)‘/’”q+1 then it holds that Y* = V;,(X™). Note that if T" is
random, then so is Y*.

Let {X™M ... X(@)} denote the set of inputs on which the VRF-attacker queries the
evaluation of the VRF with corresponding proof, and let X* denote the element such
that the attacker attempts to distinguish Vi, (X ™) from random. The reduction will suc-
ceed, if it holds that { X ... X (@} C X; and X* € Aj.

Instantiating C' with an admissible hash function ensures that with non-negligible
probability it simultaneously holds that {X ™) ... X (@} C A} and X* € A}. How-
ever, unfortunately this is not yet sufficient to make the analysis of the success proba-
bility of our reduction go through, due to the incompatibility of partitioning proofs with
“decisional” complexity assumptions, like ¢gDDH. Intuitively, the problem stems from
the fact that two different sequences of queries made by the attacker may cause the
simulator to abort with different probabilities. This issue was explained in great detail
in [37,5, 14].

Therefore we introduce the stronger notion of balanced AHFs. Essentially, a bal-
anced AHF ensures that the upper bound .« and the lower bound 7y, on the proba-
bility in

Ymax > Pr[{X(l)y v 7X(Q)} c Xl N X" e XO] > Ymin

are reasonably close. This is a typical requirement for partitioning proofs based on
decisional complexity assumptions, it occurs both in reductions with and without the
“artificial abort” [37,5]. This suggests that the notion of balanced AHFs may find ap-
plications beyond the construction of VRFs.

We stress that we achieve a reduction from a g-type assumption with ¢ = O(log k)
only if we instantiate the VRF construction with a specific AHF, essentially the code-
based AHF of [19, 28]. The reason is that this is the only construction we are aware of
which allows us to embed the given ¢gDDH-challenge into at most O(log k) carefully
selected public-key elements g; ; in the way described above. We still have to prove that
their AHF is also a balanced AHF.

More related work. VRFs were introduced by Micali, Rabin, and Vadhan [29], along
with verifiable unpredictable functions (VUFs), a generic conversion from VUFs to
VRFs based on Goldreich-Levin hard-core predicates [22], and a VUF-construction
(with small input space) based on the RSA assumption. Specific, number-theoretic con-
structions of VRFs can be found in [29,28, 16,17, 1,25,9]. Note that most of these
constructions either do not achieve full adaptive security for large input spaces, or are
based on much stronger, interactive complexity assumptions. In particular, the VRF
construction of Dodis [16] with outer error-correcting code is based on a g-type as-
sumption (there called the sf-DDH assumption of order q) with ¢ = O(log k), but this
assumption is interactive. We wish to avoid interactive assumptions to prevent circular
arguments, as explained by Naor [32].

Abdalla et al. gave generic constructions of VRFs from so-called VRF-suitable
identity-based KEMs [1,2]. While the conference version of this paper [1] considered
only selective security, the full version [2] contains proofs that the construction from [1]
achieves full security, under either under the complexity assumption from [25] with
polynomially-bounded g, or, alternatively, under a g-type assumption with ¢ = O(k)
when combined with an admissible hash function.

Brakerski et al. [11] introduced the relaxed notion of weak VRFs, along with sim-
ple and efficient constructions, and proofs that neither VRFs, nor weak VRFs can be
constructed (in a black-box way) from one-way permutations. Fiore and Schroder [18]
proved that verifiable random functions are not even implied (in a black-box sense)
by trapdoor permutations. Several works introduced related primitives, like simulatable
VRFs [12] and constrained VRFs [21].

At Eurocrypt 2006, Cheon [15] described an algorithm, which computes the discrete
logarithm on input (g, g*,...,¢""). This algorithm is faster by a factor of /q than
generic algorithms for the standard discrete logarithm problem where only (g, g%) is
given. This shows that g-type assumptions are particularly problematic when q is large.
The security loss must be compensated with larger group parameters, at the cost of
efficiency. We stress that Cheon’s algorithm is only much faster than generic algorithms
for the standard discrete logarithm problem if ¢ is very large (say, ¢ = 2%°). However,
Cheon’s algorithm gives no apparent reason to criticise g-type assumptions for small g,
like ¢ < 40.

On avoiding q-Type assumptions altogether. Chase and Meiklejohn [13] present a con-
version that allows to replace g-type assumption in certain applications with a static
(that is, not g-type) subgroup hiding assumption, by leveraging the dual-systems tech-
niques of Waters [36]. It is natural to ask whether these techniques can be used to
construct verifiable random functions from static assumptions. Unfortunately, the con-
version of [13] requires to add randomization. Thus, when applying it to known VRF
constructions like [17], then this contradicts the unique provability requirement. Ac-
cordingly, Chase and Meiklejohn were able to prove that the VRF of Dodis and Yam-
polski [17] forms a secure pseudorandom function under a static assumption, but not
that it is a secure verifiable random function.

We leave the construction of a verifiable random function with large input space
and full adaptive security from a static assumption, like Decisional Diffie-Hellman, as
an open problem.

2 Preliminaries

For a vector K € {0,1}"™ we write K; to denote the i-th component of K. If A is a
finite set, then a <~ A denotes the action of sampling @ uniformly random from A. If

A is a probabilistic algorithm, then we write a & A to denote the action of computing
a by running A with uniformly random coins. We define [n] := {1,...,n} C Nas the
set of all positive integers up to n.

2.1 Verifiable Unpredictable/Random Functions

Let (Gen, Eval, Vfy) be the following algorithms.

— Algorithm (vk, sk) < Gen(1¥) takes as input a security parameter k and outputs a
key pair (vk, sk). We say that sk is the secret key and vk is the verification key.

— Algorithm (Y, 7) ¢ Eval(sk, X) takes as input secret key sk and X € {0,1}*,
and outputs a function value Y €), where) is a finite set, and a proof 7. We
write Vi, (X) to denote the function value Y computed by Eval on input (sk, X).

- Algorithm Vfy(vk, X,Y,7) € {0,1} takes as input verification key vk, X €
{0, 1}’“, Y € Y, and proof 7, and outputs a bit.

Initialize : Evaluate(X) : Challenge(X™) :

b < {0,1} (Y, 7) & Eval(sk, X) (Yo, m) & Eval(sk, X*)
(vk, sk) & Gen(1¥) ~Return (Y,) vid&y

Return vk Return Y}

Finalize""(X*,Y*): Finalize""" (v') :

(Y,7) & Eval(sk, X*) If0' =bthen

IfY* =Y then Return 1
Return 1 Else Return 0
Else Return 0

Fig. 1. Procedures defining the security experiments for VUFs and VRFs.

Definition 1. We say that (Gen, Eval, Vfy) is a verifiable random function (VRF) if all
the following properties hold.

Correctness. Algorithms Gen, Eval, Vfy are polynomial-time algorithms, and for all
(vk, sk) & Gen(1%) and all X € {0,1}* holds: if (Y,n) & Eval(sk, X), then
Vey(vk, X, Y,7)=1.

Unique provability. For all (vk,sk) & Gen(1¥) and all X € {0,1}%, there does
not exist any tuple (Yo, mo, Y1, 1) such that Yy # Y1 and Vy(vk, X, Yy, mo) =
Viy(vk, X, Y1,m) = 1.

Pseudorandomness. Consider an attacker A with access (via oracle queries) to the
procedures defined in Figure 1. Let GéRF denote the game where A first queries
Initialize, then Challenge, then FinalizeVRF, where the output of Finalize"R"
is the output of the game. Moreover, A may arbitrarily issue Evaluate-queries, but
only after querying Initialize and before querying Finalize""". We say that A is
legitimate, if A never queries Evaluate(X) and Challenge(X™*) with X = X*
throughout the game.

We define the advantage of A in breaking the pseudorandomness as
AdVYF (k) = 2 Pr[Ge = 1] — 1
Definition 2. We say that (Gen, Eval, Vfy) is a verifiable unpredictable function (VUF)
if the correctness and unique provability properties from Definition 1 hold, and we have:
Unpredictability. Consider an attacker A with access (via oracle queries) to the pro-
cedures defined in Figure 1. Let G{j‘UF denote the game where A first queries
Initialize, then an arbitrary number of Evaluate-queries, then Finalize""\,
and the output of Finalize"V" is the output of the game. We say that A is le-
gitimate, if A never queries Evaluate(X) and Challenge(X*) with X = X*

throughout the game.
We define the advantage of A in breaking the unpredictability as

Adv R (k) := Pr[Gue = 1]

2.2 g-Diffie-Hellman Assumptions

In the sequel let G, G begroups of prime order, with bilinear map e : G x G — Gr.

Initialize?PH Finalize?®"(T) :

g h &Gz & Zyg| If7T = e(gzﬁl,h) then Return 1
Return (g, g%, ... i h) Else Return 0

Initialize?®"" : Finalize?"" (/)

9, h & Gia & Zyg;b & {0,1} 0 = b then Return 1
To := e(g, h)’“ﬁl,Tl &Gy Else Return 0
Return (gvgmv s 7gzq7h7 Tb)

Fig. 2. Procedures defining the g-Diffie Hellman assumptions.

Definition 3. Let GqBDDH be the game with B and the procedures defined in Figure 2,
where B calls Initialize?°®", then Finalize?°PH e?PPH
is the output of the game. We denote with

, and the output of Finaliz

AV (k) =2 Pr [GEP = 1) 1
the advantage of A in breaking the qDDH-assumption in (G, Gr).

Definition 4. Let G%CDH be the game with B and the procedures defined in Figure 2,

qCDH gCDH ;

where B calls Initialize?“P" | then Finalize s

the output of the game. We denote with

, and the output of Finalize

AdquCDH(k:) = Pr [G%CDH = 1}

the advantage of A in breaking the qCDH-assumption in (G, Gr).

3 Main Construction

Let G, G be groups of prime order with bilinear map ¢ : G X G — G, such that each
group element has a unique representation, and that group membership can be tested
efficiently.

Let VF = (Gen, Eval, Vfy) be the following construction.

Generation. Algorithm Gen(1*) chooses an admissible hash function C : {0,1}¥ —
{0,1}"™ and two random generators g, h & G. Then it computes g; ; = g%,
where a; ; & Zy) and for (4, 7) € [n] x {0, 1}. The keys are defined as

vk = (C, 9., (9i) jyeimixf01y) and sk = (i) (i)] x {01}

Evaluation. On input X € {0, 1}*, algorithm Eval(sk, X) first computes C'(X). For
i € [n] let C(X); denote the i-th bit of C(X) € {0,1}". Then the algorithm
determines the function value by computing ax =[]}, a; c(x), and setting

Y :=e(g,h)*x.
The corresponding proof m = (1, ..., m,) is computed recursively by first defin-
ing g := ¢ and then setting
m= w0 forall i€ [n]

The algorithm outputs (Y,).

Verification. Algorithm Vfy(vk, X, Y,) checks the consistency of 7 using the bilin-
ear map. It first tests if X and 7 contain only valid group elements. Then it com-
putes C(X) = (C(X)1,...,C(X),) € {0,1}", defines 7y := g, and outputs 1 if
and only if all the following equations are satisfied.

e(mi,g) = e(mi—1,9i,0(x),) forall i€ [n]
Y =e(m,, h)

It is straightforward to verify that the above construction is correct in the sense
of Definitions 1 and 2. Furthermore, the unique provability follows from the group
structure and the fact that even an unbounded attacker is not able to devise a proof 7 for
a different group element. It remains to prove pseudorandomness.

4 Balanced Admissible Hash Functions

Standard admissible hash functions (AHFs) were introduced by Boneh and Boyen [§],
a simplified definition was given by Freire et al. [19]. For our application, we will
need AHFs with stronger properties, therefore we have to extend the notion of AHFs
to balanced AHFs. The essential difference between balanced AHFs and the standard
definition (e.g. [20, Definition 3]) is that previous works required only a reasonable
lower bound on the probability in Equation (3) below. In contrast, the security analysis
of our VRF construction will essentially require reasonable upper and lower bounds,
and that these bounds are sufficiently close.

Definition 5. Let k € N and n = n(k) be a polynomial, and let C' : {0,1}F —
{0,1Y7%) be an efficiently computable function. Let Fi - {0,1}* — {0, 1} be defined
as

FK(X) =

{o, ifvi:C(X); =K, Vv K;=1 .

1, else.

We say that C is a balanced admissible hash function (balanced AHF), if there
exists an efficient algorithm AdmSmp (1%, Q, §), which takes as input (Q, §) where Q =
Q(k) € N is polynomially bounded and § = 6(k) € (0,1] is non-negligible, and
outputs K € {0,1, L}" such that for all XV, ... X(@ X* € {0,1}* with X* ¢
(XM X@Y holds that

Ymax (k) > Pr[Fr(XM) = .. = Fpe(X @) =1 A Fr(X*) =0] > Ymin(k) (3)
where Ymax (k) and Ymin (k) satisfy that the function 7(k) defined as
T(k) := 2 Ymin(k) - (k) — Ymax(k) + Ymin (k) (C))
is non-negligible. The probability is taken over the choice of K.

Remark 1. The definition of 7 essentially condenses two requirements, namely (1) that
Ymin 1S non-negligible, and (2) that the difference Ymax — Ymin 1S “reasonably” small,
where “reasonably” depends on 7y, and d. The definition of function 7 may appear
very specific, however, such a term appears typically in security analyses that follow
the approach of Bellare and Ristenpart [5]. Therefore we think this is exactly what is
needed for typical applications of balanced AHFs. See Lemma 1, for instance.

Instantiating balanced admissible hash functions. Efficient standard admissible hash
functions are known to exist [28, 8, 19]. For instance, there is a simple construction from
codes with suitable minimal distance [28, 19]. In this section we will show that such
codes also yield a balanced AHF. In contrast to [28, 19], we have to show both upper
and lower bounds, and choose certain parameters more carefully to ensure that (4) is a
non-negligible function.

Theorem 1. Let (Cy)ren with Cy = {0,1}F — {0,1}" be a family of codes with
minimal distance nc for a constant c. Then (Cy)ken is a family of balanced admissible

hash functions. Moreover, AdmSmp(1¥,Q, 6) outputs K € {0,1, L}" with exactly

d= {%J components not equal to L.

Proof. Consider the algorithm AdmSmp which sets

i {ln(QQ + Q/é)J
' —In((1-1¢))
and chooses K uniformly random from ({0, 1} U{L})™ with exactly d components not
equal to |2
Fix X .., X@ X* ¢ {0,1}* with X* ¢ {XD) ... X (@7} for the analysis
of this algorithm.

% Note that this algorithm is identical to the algorithm from [20, Theorem 2], except that we
have chosen d slightly differently.

Upper bound. Note that we have Pr[Fx (X*) = 0] = 274, and thus

Ymax 1= 274 = Pr[Fg (X*) = (]
> Pr[Fg(X*) = 0] - Pr[Fg(XW) = ... = Fe(X(@) =1 | Fg(X*)]
— Pr[Fg(X*) = OAFK(X(U) == FK(X(Q)) =1].

Lower bound. We first observe that for any two strings X, X* € {0, 1}* with X # X*

holds that
Pr[Fr(X) =0 Fx(X*) =0 < (1 —¢)%
To see this, consider an experiment where two code words C'(X) and C(X*) are given,
with X, X* € {0,1}* and X # X*, and we sample d pairwise distinct positions
i1,...,iq & [n]. Since C(X) and C(X*) differ in at least nc positions, the probability
that C(X);, = C(X*);, is at most (n—nc)/n = 1 —c. The probability that C'(X);, =
C(X*);, forall j € [d] is thus at most (1 — ¢)<.
A union bound yields that
PrFg(XM) =0V vV Fp(X @) =0 | Fx(X*) =0] < Q(1 — ¢)*
which implies
PrF(XM)=1A- AFg(X@)=1| Fg(X*) =0 >1—-Q(1 —¢)*
This yields the lower bound

min =(1 = Q(1 =) - 27
<PrFg(XM)=1A AFg(X Q) =1| Fx(X*) = 0] - Pr[Fg(X*) = 0]
=Pr[Fg(XW) = ... = Fg(X Q) =1 A Fg(X*) =0
Balancedness of bounds. Finally, it remains to show that for polynomial) and non-
negligible § the function 7 from (4) is non-negligible. We first compute (omitting the
parameter %k from functions to simplify notation):
T :=2 0 Ymin — Ymax + Vmin
=2-0-1-Q(1—c)%-279 271+ 1 - Q(1 —)% - 27
=274 (26— (26 +1)- Q(1 — 0)9)
Now we will show that if d is chosen as above, then both 2~ and 25— (26+1)-Q(1—c)?

are non-negligible. Thus, their product is non-negligible as well.

We have
—d _ 111(2Q+Q/5)J In(2Q+Q/%)
274 =27 =@ | > 2 m((1-e)

and
1n(2Q+Q/5)J

20— (2041)-Q(1 —c)? =20 — (26 + 1) - Q(1 — ¢)L=mT-»
>26—(204+1)-Q(2Q+Q/5)*
=20 - (20Q + Q)(2Q + Q/8)~"

=26 -0(26Q +Q)(20Q + Q) ' =

\%

which both are non-negligible since c¢ is a constant, Q@ € N, and § € (0,1] is non-
negligible.

5 YVZF is a Verifiable Random Function

Theorem 2. If VF is instantiated with the balanced admissible hash function from
Theorem 1, then for any legitimate attacker A that breaks the pseudorandomness of
VF in time t o with advantage Adv\j‘RF by making at most () Eval-queries, there exists

an algorithm B that breaks the ¢-DDH assumption with q = {%J — 1 in time

tp ~ t 4 and with advantage
AdVE P (k) > 7 (k)

where 2 -8 is a non-negligible lower bound on Adv'{X" (k), and 7(k) is a non-negligible

function.

Initialize : Evaluate(X) :
bad :=0 (Y,m):=1
K & AdmSmp(1¥, Q, 6) If Fic(X) # 1 then
For (i,7) € [n] x {0,1} do bad := 1;
8 Else
Q5 <_Z\G\ . Pr o x ()
IfK; = j then g ; = g**oid Y = elg om*h)

Else g; ; := g*ii For j € [nl])dQ "
vk == (C, g, h, (9:.).5)) Ty i= g e
Return vk mi= (T,)
Return (Y,)

Challenge(X™) : Finalize"" (') :
Y*i=1 Ifbad = 1 then ¢’ & {0,1}
If Fc (X) = 1 then Else ¢ := V'

bad := 1 Return ¢’
Else

Compute Yo, . .., Yg+1 S.t.

PK,n,X* (a:) = Z(ZZ;L(} ’YZZL'Z
Y* o= TYa+1 . 3:1 e((gm")’}’i7h)
Return Y~

Fig. 3. Procedures for the simulation of the VRF pseudorandomness experiment by 5.

Proof. Algorithm B receives as input (g, g%, ..., 9" ,h,T) and runs algorithm A as a
subroutine. Whenever A queries Initialize, Evaluate, Challenge, or Finalize, B
executes the corresponding procedure from Figure 3. Let us give some remarks on these
procedures.

Initialization. The values (g, h, g*) in Initialize are from the ¢gDDH-challenge. Recall
that 2 - § is a non-negligible lower bound on Ade‘RF(k), and @ is the upper bound on
the number of Evaluate-queries.

Note that B computes the g; j-values exactly as in the original Gen-algorithm, by
choosing o ; & Z)) and setting g; ; := g**7, but with the exception that

Gige, =g

for all (4,5) € [n] x {0,1} with K; = j. Due to our choice of an admissible hash
function according to Theorem 1, there are exactly ¢ + 1 components K; of K which
are not equal to L.

Finally, note that all g; g,-values are distributed correctly, and that this set-up de-
fines the secret key implicitly as sk := (log, gi ;)i j)e[n]x{0,1}- Thus, the function
Vi (X) is well-defined for all X (but B will not be able to evaluate Vi on all inputs
X, as explained below).

Helping definitions. In order to explain how B responds to Evaluate and Challenge
queries made by A, let us define two sets Ix ., x and Jg ., x, which depend on an
AHF key K, a VRF input X € {0, 1}’“, and integer w € Nwith 1 < w < n, as

Igwx ={icw:K=CX)} and Jgux:=[w\Ixwx

Note that I ,, x denotes the set of all indices i € [w] C [n] such that K; = C(X);,
and Jg ., x denotes the set of all indices in [w] which are not contained in Ix , x.
Based on these sets, we define polynomials Pg ., x ()

PK,w7X($) = H (x4 Oéi,Ki> : H Q; K, € Z‘GM%‘]

1€lx w, x 1€J K, w, X
Now we can make the following observations:

1. For all X with F(X) = 1, the set I ,, x contains at most ¢ elements, and thus
the polynomial Pk ., x (x) has degree at most q.
This implies that if Fx(X) = 1, then B can efficiently compute g’%-»-x(*) for all
w € [n]. To this end, B first computes the coefficients vy, . . ., 74 of the polynomial
Pi o x () = Y1 vix® with degree at most g, and then

. q i
gPrwx(@) . ngzo viwt _ H(gy)”/i

1=0

using the terms (g, g%, ...,¢*) from the g-DDH challenge.
2. If Fx(X) = 0, then Pk, x(x) has degree ¢ + 1. We do not know how B can
efficiently compute g7%-»-x (%) in this case.

Responding to Evaluate-queries. If F(X) = 1, then procedure Evaluate com-
putes the group elements g<»x (%) as explained above. Note that in this case the re-
sponse to the Evaluate(X)-query of A is correct. However, if F(X) = 0, then the
response of B is incorrect.

Responding to the Challenge-query. If Fi(X*) = 0, then procedure Challenge
computes

a . .
Y* = Tt . H e((g%), h) = TVt - e(g=i=1 %% p)
i=1

where 7o, . . ., 7441 are the coefficients of the degree-(g+1)-polynomial Pk ,, x«(x) =
Zgi& v;x'. Note that if T = e(g, h)xﬁl, then it holds that Y* = V(X ™). Moreover,
if T is uniformly random, then so is Y'*.

Analysis of B’s running time. The running time tg of B consists essentially of the
running time ¢ 4 of A plus a minor number of additional operations, thus we have ¢ =~

ta.

Analysis of B’s success probability. The simulation of the challenger by B is per-
fect, unless bad := 1 is set. This happens only if A queries Evaluate(X) with
Frg(X) # 1, or Challenge(X*) with Fx(X*) = 1. Since the AHF key K is
information-theoretically hidden in vk, the terms ymax and ymin from Equation (3) are
upper and lower bounds on the probability that bad := 1 is never set throughout the
experiment.

Lemma 1.
AdquCDH(k) Z 2- Ymin * 6 — Ymax + Ymin

The proof of Lemma 1 follows the approach of Bellare and Ristenpart [S] very
closely, therefore it is deferred to Appendix A. This approach allows us to provide an
analysis without the “artificial abort” of Waters [37]. The latter has also been used to
analyze the VRF of Hohenberger and Waters [24], but leads to a less tight reduction.

Remark 2. Note that the lower bound on /—\dquCDH(k) in Lemma 1 is only useful, if §

and 7ymin are non-negligible and ymax and i, are sufficiently close. This is where we
need the balancedness of admissible hash function C'.

Observe that since we instantiate C' with a balanced AHF and ¢ is a non-negligible
lower bound on Adv¥" (k)/2, the function

T(k) =2 Ymin * 0 — Ymax + Ymin

is non-negligible. This concludes the proof of Theorem 2.

6 V. is a Verifiable Unpredictable Function

In this section we prove that construction VF also is a secure VUF. Note that this
construction is essentially identical to the VUF of Lysyanskaya [28], only the proof is
based on a different complexity assumption.

The main purpose of this section is to show that for the VUF-security proof of VF
an even weaker (but still O(log k)) ¢-type assumption is sufficient. We can base security
on a ¢gCDH assumption that is weaker in two ways. First, it is the computational version
of the ¢gDDH assumption. Second, we need only ¢ = | (In 2Q))/c| — 1. Thus, in contrast
to the VRF-security proof, ¢ is independent of the advantage of the attacker.

6.1 Admissible Hash Functions

In order to prove that V.F is a VUF, it will suffice to instantiate VJF with a standard
(that is, not necessarily balanced) admissible hash function C'. We recall the standard
definition of admissible hash functions (AHFs) from Freire et al. [19].

Definition 6 ([19]). Let k € N and n = n(k) be a polynomial, and let C' : {0,1}*F —
{0, 1}%) be an efficiently computable function. Let Fi : {0,1}* — {0, 1} be defined
as in Equation (2). We say that C' is an admissible hash function (AHF), if there exists an
efficient algorithm AdmSmp(1*, Q), which takes as input polynomial Q = Q(k) € N,
and computes K € ({0,1} U { L} such that for all XV, ... X@) X* ¢ {0,1}*
with X* ¢ {XM) .. X@)Y holds that

PrFp(XW) = .. = Fp(X@) =1 A Fr(X*) = 0] > vmin(k))
such that Ymin (k) non-negligible. The probability is taken over the choice of K.

Instantiating Admissible Hash Functions. A simple and efficient construction of AHFs
can be found in [19] (based on [28]), we capture their existence in the following lemma.

Lemma 2 ([28,19]). Let S be a set and (Cy,)en with Cy : {0,1}F — S™ be a family
of codes, with minimal distance nc for a constant ¢ and such that |S| is bounded by
a polynomial in k. Then (Cy)ren is an admissible hash function, where AdmSmp(Q)
outputs K € S U {L}" with exactly d := | (In2Q)/c]| components not equal to | and

Ymin > (1= Q(1 —¢)¥) - 274,

Remark 3. Note that even though the last two statements of the above theorem were
not made explicit in previous works, they are implicitly contained in the proof of [20,
Theorem 2].

6.2 Security Analysis

Theorem 3. If VF is instantiated with the admissible hash function from Lemma 2,
then for any legitimate attacker A that breaks the unpredictability of VF in time t 4
with advantage AdVX‘UF by making at most () Eval-queries, there exists an algorithm B
that breaks the qCDH assumption with ¢ = |(In2Q)/c] — 1 in time tg =~ t_4 and with
advantage

AdVEPH (k) > AdvPF (k) - (1 — Q(1 — ¢)%) - 274

where d := |(In2Q)/c| = ¢+ 1.

The proof of this theorem is nearly identical to the proof of Theorem 2, but the
analysis of the success probability of 13 is much simpler, because we consider unpre-
dictability instead of pseudorandomness. Therefore we only sketch the proof.

Proof. Algorithm B receives as input (g, g%,...,g*", h,T) and runs algorithm A as
a subroutine. Whenever A issues a query (Initialize, Evaluate, Finalize), then B
executes the corresponding procedure from Figure 4.

Initialize(X) : Evaluate(X) :

bad :=0 (Y,m):= 1L
K & AdmSmp(1*, Q, 6) If Fic(X) # 1 then
For (4,j) € [n] x {0,1} do Elbad =1;
$ se
%Z%;Zj‘fl‘len hi j = g¥teid Y = e(gFEnx @) p)
Else h; ; := g*i+i For j € [n}])dq
vk == (C, g, h, (hij)i,) 7 = gTKax @)
Return vk m=(T1,...,7n)

Return (Y,)

Finalize"'F (X", Y™) :
If Fr (X™) = 0 then

bad =1
If bad = 1 then Return L
Compute Yo, . . ., Yg+1

st Pron,x (2) = 2000 ya

p 1/
T:= (Y*/e(gzi?zl viw ,h)) Ya+1
Return T’

Fig. 4. Procedures for the simulation of the VUF unpredictability experiment by 1.

The running time ¢z of BB consists essentially of the running time ¢4 of A plus a
minor number of additional operations, thus we have ¢t ~ t 4. Note that 3 simulates
the original VUF security experiment perfectly, if bad = 0 throughout the game. Note
also that

zat1

Y* = e(g7 h)z?:ol ’Yixi - T = e(g) h)

The choice of K is information-theoretically hidden in vk. Thus,

AdvEPH (k) > AdvYF (k) - Pr[bad = 0]
> AdVYF(E) - Amin (k) = AdviOF (k) - (1 — Q(1 — ¢)4) - 27¢

Acknowledgements. We thank the anonymous reviewers of TCC 2015 for their helpful
comments.

References

1. Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions from identity-
based key encapsulation. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of
LNCS, pages 554-571, Cologne, Germany, April 26-30, 2009. Springer, Berlin, Germany.

2. Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions: Relations to
identity-based key encapsulation and new constructions. Journal of Cryptology, 27(3):544—
593, July 2014.

10.

11.

13.

14.

15.

16.

17.

. Man Ho Au, Willy Susilo, and Yi Mu. Practical compact e-cash. In Josef Pieprzyk, Hos-

sein Ghodosi, and Ed Dawson, editors, ACISP 07, volume 4586 of LNCS, pages 431445,
Townsville, Australia, July 2—4, 2007. Springer, Berlin, Germany.

. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact e-cash

and simulatable VRFs revisited. In Hovav Shacham and Brent Waters, editors, PAIRING
2009, volume 5671 of LNCS, pages 114-131, Palo Alto, CA, USA, August 12—14, 2009.
Springer, Berlin, Germany.

. Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified

proof and improved concrete security for Waters’ IBE scheme. In Antoine Joux, editor,
EUROCRYPT 2009, volume 5479 of LNCS, pages 407-424, Cologne, Germany, April 26—
30, 2009. Springer, Berlin, Germany.

. Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified

proof and improved concrete security for Waters” IBE scheme. Cryptology ePrint Archive,
Report 2009/084, 2009. http://eprint.iacr.org/.

. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for

code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 409-426, St. Petersburg, Russia, May 28 — June 1, 2006. Springer,
Berlin, Germany.

. Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles.

In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 443-459, Santa
Barbara, CA, USA, August 15-19, 2004. Springer, Berlin, Germany.

. Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseudorandom

functions with improved efficiency from the augmented cascade. In Ehab Al-Shaer, Ange-
los D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10, pages 131-140, Chicago,
Illinois, USA, October 4-8, 2010. ACM Press.

Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signatures based on com-
putational Diffie-Hellman. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin,
editors, PKC 2006, volume 3958 of LNCS, pages 229-240, New York, NY, USA, April 24—
26, 2006. Springer, Berlin, Germany.

Zvika Brakerski, Shafi Goldwasser, Guy N. Rothblum, and Vinod Vaikuntanathan. Weak
verifiable random functions. In Omer Reingold, editor, 7CC 2009, volume 5444 of LNCS,
pages 558-576. Springer, Berlin, Germany, March 15-17, 2009.

. Melissa Chase and Anna Lysyanskaya. Simulatable VRFs with applications to multi-theorem

NIZK. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 303-322,
Santa Barbara, CA, USA, August 19-23, 2007. Springer, Berlin, Germany.

Melissa Chase and Sarah Meiklejohn. Déja Q: Using dual systems to revisit g-type assump-
tions. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 622-639, Copenhagen, Denmark, May 11-15, 2014. Springer, Berlin, Ger-
many.

Sanjit Chatterjee and Palash Sarkar. HIBE with short public parameters without random
oracle. In Xuejia Lai and Kefei Chen, editors, ASTACRYPT 2006, volume 4284 of LNCS,
pages 145-160, Shanghai, China, December 3—7, 2006. Springer, Berlin, Germany.

Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In Serge Vaude-
nay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 1-11, St. Petersburg, Russia,
May 28 — June 1, 2006. Springer, Berlin, Germany.

Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In Yvo
Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 1-17, Miami, USA, January 6-38,
2003. Springer, Berlin, Germany.

Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs
and keys. In Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416431, Les
Diablerets, Switzerland, January 23-26, 2005. Springer, Berlin, Germany.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Dario Fiore and Dominique Schroder. Uniqueness is a different story: Impossibility of ver-
ifiable random functions from trapdoor permutations. In Ronald Cramer, editor, 7CC 2012,
volume 7194 of LNCS, pages 636—653, Taormina, Sicily, Italy, March 19-21, 2012. Springer,
Berlin, Germany.

Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 513-530, Santa Barbara, CA,
USA, August 18-22, 2013. Springer, Berlin, Germany.

Eduarda S.V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. Cryptology ePrint Archive, Report
2013/354,2013. http://eprint.iacr.org/.

Georg Fuchsbauer. Constrained verifiable random functions. In Michel Abdalla and
Roberto De Prisco, editors, Security and Cryptography for Networks - 9th International Con-
ference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings, volume 8642 of Lecture
Notes in Computer Science, pages 95-114. Springer, 2014.

Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
21st ACM STOC, pages 25-32, Seattle, Washington, USA, May 15-17, 1989. ACM Press.
Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive zero-
knowledge proofs are equivalent (extended abstract). In Ernest F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 228-245, Santa Barbara, CA, USA, August 16-20,
1992. Springer, Berlin, Germany.

Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under standard
assumptions. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
333-350, Cologne, Germany, April 26-30, 2009. Springer, Berlin, Germany.

Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large
input spaces. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
656—672, French Riviera, May 30 — June 3, 2010. Springer, Berlin, Germany.

Stanislaw Jarecki and Vitaly Shmatikov. Handcuffing big brother: an abuse-resilient trans-
action escrow scheme. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 590-608, Interlaken, Switzerland, May 2—-6, 2004. Springer,
Berlin, Germany.

Moses Liskov. Updatable zero-knowledge databases. In Bimal K. Roy, editor, ASI-
ACRYPT 2005, volume 3788 of LNCS, pages 174-198, Chennai, India, December 4-8, 2005.
Springer, Berlin, Germany.

Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 597-612,
Santa Barbara, CA, USA, August 18-22, 2002. Springer, Berlin, Germany.

Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th
FOCS, pages 120-130, New York, New York, USA, October 17-19, 1999. IEEE Computer
Society Press.

Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In Joe Kilian, edi-
tor, CRYPTO 2001, volume 2139 of LNCS, pages 542-565, Santa Barbara, CA, USA, Au-
gust 19-23, 2001. Springer, Berlin, Germany.

Silvio Micali and Ronald L. Rivest. Micropayments revisited. In Bart Preneel, editor, CT-
RSA 2002, volume 2271 of LNCS, pages 149-163, San Jose, CA, USA, February 18-22,
2002. Springer, Berlin, Germany.

Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 96—-109, Santa Barbara, CA, USA,
August 17-21, 2003. Springer, Berlin, Germany.

33. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In 38th FOCS, pages 458-467, Miami Beach, Florida, October 19-22, 1997. IEEE
Computer Society Press.

34. Moni Naor and Omer Reingold. From unpredictability to indistinguishability: A simple con-
struction of pseudo-random functions from MACs (extended abstract). In Hugo Krawczyk,
editor, CRYPTO’98, volume 1462 of LNCS, pages 267-282, Santa Barbara, CA, USA, Au-
gust 23-27, 1998. Springer, Berlin, Germany.

35. Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. How to strengthen any weakly un-
forgeable signature into a strongly unforgeable signature. In Masayuki Abe, editor, CT-
RSA 2007, volume 4377 of LNCS, pages 357371, San Francisco, CA, USA, February 5-9,
2007. Springer, Berlin, Germany.

36. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619-636,
Santa Barbara, CA, USA, August 16-20, 2009. Springer, Berlin, Germany.

37. Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114-127, Aarhus, Den-
mark, May 22-26, 2005. Springer, Berlin, Germany.

A Proof of Lemma 1

Let GQB?BH denote the ¢gDDH security experiment with /3 running A as a subroutine as
described above. Let good denote the event that variable bad is never set to 1. Then,
since BB outputs a random bit if bad := 1 is set, it holds that
DDH DDH DDH
Pr[G%(A) =1]= Pr[G%(A) =1 A good] + Pr[—good] -Pr[GqB(A) =1 | —good]
= Pr[G%?E"; =1 A good] + Pr[—good] - 1/2

and therefore
DDH DDH
Advg (k) =2- Pr[GqB(A) =1]-1
=2 Pr[GqB'?i'; =1 A good| — Pr[good] (6)
4DDH

Thus, it remains to derive suitable bounds on Pr[G By = 1A good] and Pr[good]. We
will need the following lemma from [5, 7].

Lemma 3 ([5,7]). Let G; and G; be two games which proceed identical until bad = 1.
Then

— Pr[G; sets bad = 1] = Pr[G; sets bad = 1]
- Pr[G; = b A G, does not set bad = 1] = Pr[G; = b A G; does not set bad = 1]
for any b.

A simpler-to-analyze game. Following Bellare and Ristenpart [5], we now gradually
make changes to game GQB?E\';, until we reach game G'3, which will be easier to analyze.
In the sequel let good; denote the event that bad is never set to bad = 1 in Game 4.

Evaluate;(X) :
(Y,m):=L
If Fx (X) # 1 then
bad :=1
Else
(Y,) & Eval(sk, X)
Return (Y,)

Procedures for Game G :

Challenge, (X™) :
Y =1
If Fx(X) =1 then
bad :=1
Else
If b = 1 then
(Y*,7) & Eval(sk, X)
Else Y* & Gr
Return Y*

Finalize; (V') :

Ifbad = 1 then ¢’ & {0,1}
Else ¢ =V

If ¢ = b then Return 1
Else Return 0

Initialize; (X) :

bad :=0

(vk, sk) & Geng (1)
b&{0,1}

K& AdmSmp(1*, Q, 6)
Return vk

Procedures for Game G2 (new instructions are highlighted in boxes):

Evaluate:(X) :

(Y,m):=1

If Fx (X)) # 1 then
bad :=1

Challenge,(X™) :

Y* =1

If Fx(X) = 1 then
bad :=1

(Y,) & Eval(sk, X)

If b = 1 then

Else
(Y,) & Eval(sk, X)
Return (Y,)

(Y*,7) & Eval(sk, X)

Else Y* & Gr

Else
If b = 1 then
(Y*,7) & Eval(sk, X)
Else Y* & Gr
Return Y*

Finalizes (V') :

If bad = 1 then [/ := ¥/ |

Else ¢’ := V'
If ¢ = b then Return 1
Else Return 0

Procedures for Game G (new instructions are highlighted in boxes):

Evaluates(X) :

Challenge, (X ™) :

(Y, 7) <& Eval(sk, X)
Return (Y, 7)

Finalize;(b') :

If b = 1 then
(v*,7) & Eval(sk, X)

K& AdmSmp(1*, Q, §)

Else V* & Gr

For X € X do

Return Y |If Fic(X) # 1 then bad := 1|
Initializes (X) : ’IfFK(X*):lthenbadzzl‘
bad := 0$ d:=v

(vk, sk) < Genc (1) If ¢ = b then Return 1

b < {0,1} Else Return 0

Return vk

Fig. 5. Procedures defining the sequence of games in the proof of Lemma 1.

Game 0. We define G := GqBE()B';, which implies

Pr[G%?B'; =1Agood] =Pr[Gy = 1A good,] and Prlgood] = Pr[good,]

Game 1. In this game the procedures Initialize;, Evaluate;, Challenge,, and
Finalize; described in Figure 5 are used. Note that Initialize; generates a normal
VRF key pair (vk, sk), and Evaluate; and Challenge, use the secret key sk to
evaluate the VRF and to create the challenge.

However, note that sk is only used in Evaluate; (X)-queries with Fix (X) = 1,
and Challenge, (X*)-queries with F(X*) = 0. This mimics the simulation of 5
perfecty, in particular all outputs computed by these procedures are distributed exactly
like in Game 0. This implies that

Pr[G; =1 Agood,] = Pr[Gy =1 A good,] and Pr[good,] = Pr[good,]

Game 2. In this game we set Initialize, := Initialize,, and define Finalize,,
Evaluate,, and Challenge, as depicted in Figure 5. Note that Games G2 and G,
proceed identical until bad is set, thus by Lemma 3 we have

Pr[G2 = 1 A good,] = Pr[G; =1 Agood;] and Pr[good,] = Pr[good,]

Game 3. Note that the outputs of procedures Evaluate; and Challenge, are inde-
pendent of K, only Finalize, depends on K. Therefore we can simplify our descrip-
tion of the game, by choosing K only at the end of the game, and checking only then if
bad needs to be set to bad := 1.

Formally, in Game ('3 the procedures Initializez, Evaluatesz, Challenges, and
Finalizes described in Figure 5 are used. All changes are purely conceptual, thus we
have

Pr[Gs = 1 Agood,] = Pr[Gs =1 A good,] and Pr[good,] = Pr[good,]
Note also that now K is chosen only after A asks Finalizes.

Analysis of Game G3. It remains to derive bounds on Pr[Gs = 1 A good,] and
Prigood,]. Let X' denote the set

Xo={(xXW X@ x: x*£2XxD 1<i<q@}

of all sequences of queries a legitimate attacker A may ask, and let X* € X. Let v(X*)
denote the probability of good, (over the choice of K), if the particular sequence X*
of queries is asked. Note that y(X*) equals the probability in Equation (3), so that Ymin
is a lower bound on the smallest value of y(X*) over all X* € X, and ymax is an upper
bound on the largest value of y(X*) over all X* € X. Let Q(X*) denote the event that
the execution of Game (3 results in the particular sequence X*. Then we can state the
following lemma (which corresponds to [6, Lemma 3.4]).

Lemma 4. For any X* as defined above holds that

Pr[Gs =1 Agood; A Q(X™)] = v(X*) - Pr[Gs = 1 A Q(X")]
Pr[good; A Q(X")] = 7(X7) - Pr{Q(X7)]
The proof of Lemma 4 is nearly identical to the proof of [6, Lemma 3.4], and therefore

deferred to Appendix B.
Now we can compute

AdquDDH(k‘) =2 Pr[G(é?i'; = 1 A good] — Pr[good] @)
= 2-Pr[G3 =1 A good;] — Pr[good,])
=2 Z Pr[Gs =1 A good; A Q(X™)] — Z Prigood; A Q(X™)]

X*eX X*eXx
€))
=2) (X)) -PrlGs=1AQX")]— Y v(X") - Pr(Q(X")]
X*eX X*eX
(10)
> 2. Ymin * Z PI’[G,; =1A Q(X*)} — Ymax * Z PT[Q(X*)]
X*eX X*eX
=2 Ymin * PT[GS = 1] — Ymax (11)

=2 Ymin - (AdVYT (B) +1)/2 = Yimax
= Ymin * Advz}—(k) — Ymax + Ymin
Z 2")/min '6_’Ymax+’7min (]2)

Here, (7) is due to Equation (6), (8) follows from the sequence of games described
above, (9) and (11) follow from the fact that we sum over mutually exclusive events
Q(X*) with) .., Pr[Q(X*)] = 1, (10) is by Lemma 4, and (12) by the definition
of § < Adv4” (k)/2.

B Proof of Lemma 4

The execution of AdmSmp in Game 3 uses random coins which are independent of the
rest of the game. Therefore, the set of random coins underlying Game 3 can be seen as
a cross product 2 = (2’ X Rx, where each member is a pair (w’, 7k) € {2 such that 7
denotes the random coins used by algorithm AdmSmp, and w’ denotes all other coins
of the experiment and the attacker.

Note that that any particular choice X* of a sequence of queries made by .4 depends
only on w’, because in Game 3 algorithm AdmSmp is executed in the Finalizes-
procedure, when the sequence of queries X* issued by the attacker is already fixed.
Thus, for all X* € X let 2/(X*) denote the set of all w’ € (2’ that produce the partic-
ular sequence of queries X*. Similarly, note that the probability that Game 3 outputs 1
depends only on (2’.

Let £21 C (2’ denote the set of all w’ € 2 such that the experiment outputs 1. Let
Rgood(X*) C R denote the set of all coins leading to an AHF key K such that for
X* = (XM, ..., X@ X*)holds that

Fr(XW)y = = Fr(X@)=1 A Fg(X*)=0
Then the set of coins such that G3 = 1is 2] x Rk, and the set of coins leading to

good; A Q(X*) is £2/(X*) X Rgood(X*). Now we can compute

Pr[G3 = 1 A goody A Q(X*)] = |(£2) x Ri) N (£2/(X*) X Rgood(X*))]

[£2" X Ri|

_ (21 N 2/(X7)) X Rgood (X))

[£2' x Ri|
_ 121N 2/(X)] - [Rgood (X))
a €2’ - | Rk|
2N 2(X)] - |[Ri| [Rgood(X7)|
a 1€’ - |Rk| |Ri|
_ (21 N 2'(X*)) X R| [Rgood(X7)|
a |2 x R| | Rl

— PrfGs = 1A QX)) - (X7
and

Pr[good3 A Q(X*)] _ [£2(X*) x Rgood(X*)|

|.Q/ X RK|
12/(X7)] - | Reooa(X?)
1€2'] - [R|
_ 2'X)] - Rk [Rgood(X7))
2] - [R |Ri|
_ (X)) X Rie| | [Rgood(XY))|
‘Q’ X RK| |RK|

= Pr{Q(X)] - v(X")

