In this paper we construct PRFs that are simultaneously constrained \emph{and} key homomorphic, where the homomorphic property holds even for constrained keys. We first show that the multilinear map-based bit-fixing and circuit-constrained PRFs of Boneh and Waters (Asiacrypt 2013) can be modified to also be \emph{key-homomorphic}. We then show that the LWE-based key-homomorphic PRFs of Banerjee and Peikert (Crypto 2014) are essentially already \emph{prefix-constrained} PRFs, using a (non-obvious) definition of constrained keys and associated group operation. Moreover, the constrained keys themselves are pseudorandom, and the constraining and evaluation functions can all be computed in low depth.
As an application of key-homomorphic constrained PRFs, we construct a proxy re-encryption scheme with fine-grained access control. This scheme allows storing encrypted data on an untrusted server, where each file can be encrypted relative to some attributes, so that only parties whose constrained keys match the attributes can decrypt. Moreover, the server can re-key (arbitrary subsets of) the ciphertexts without learning anything about the plaintexts, thus permitting efficient and fine-grained revocation.
Category / Keywords: Original Publication (in the same form): IACR-TCC-2015 Date: received 2 Mar 2015 Contact author: krzpie at gmail com Available format(s): PDF | BibTeX Citation Version: 20150304:163317 (All versions of this report) Discussion forum: Show discussion | Start new discussion