Very-efficient flipping of many coins (between two parties)

Luís T. A. N. Brandão

University of Lisbon and Carnegie Mellon University

Early presentation of results at *rump session* of Theory of Cryptography Conference 2014
February 25, San Diego, USA

(Minor adjustments on Feb 28, when preparing upload to Internet)

The author is a Ph.D. student at FCUL-DI and CMU-ECE. Support for this research was provided by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie Mellon Portugal Program under Grant SFRH/BD/33770/2009.
The traditional coin-flipping template

1. Commit contribution of Alice
 - Alice
 - Bob
 - Simulator

2. Send contribution of Bob
 - Alice
 - Bob
 - Simulator

3. Open contribution of Alice
 - Alice
 - Bob
 - Simulator

4. Locally combine (XOR) the two contributions

Commitment scheme needs be both extractable (X) and equivocable (Q), i.e., be X&Q.

Several constructions exist... with group-elements or group-operations in number or with size proportional to # coins

(Two recent independent works devise more efficient methods)

What if we want to flip MANY coins, e.g., 2TB?

Very-efficient flipping of many coins (rump session TCC 2014)
A new approach

Can we achieve a BIG X&Q commitment using only:
- a FEW SMALL X-commits and a FEW SMALL Q-commits;
- and symmetric primitives (PRG, hash function, XORs)

Yes!

An initial intuition

Extractable and Equivocable commitment

Very-efficient flipping of many coins (rump session TCC 2014)
One-pass simulatable coin-flipping
(cut-and-choose based technique)

0. Prepare seeds and hashes
0.1. Alice commits seeds and hashes
\{ (X, Q) : j \in [s] \}

0.2. Cut-and-choose: [s] = J_V + J_E

0.3. Alice opens verification instances (J_V)
\{ \text{Open}(X, Q) : j \in J_V \}

0.4. Bob verifies (J_V):
\Rightarrow high probability that a portion of remaining instances (J_E) are consistent

1. X-Commit contribution of Alice
\text{PRG}(\cdot)
\{ j \in J_E \}

2. Send contribution of Bob

3. Q-open contribution of Alice
(send contribution and open hashes)

4. Locally combine contributions:

Very-efficient flipping of many coins (rump session TCC 2014)
Summary

• A new approach for flipping many coins
 - Uses few X-commits of seeds and Q-commits of hashes
 - Leverages throughput of PRG and hash function

• Overlooked in this short presentation:
 - Verifiability condition for simulator to check that extracted hash is consistent with masked contribution.
 - How to reduce communication, by fragmenting the contribution using an efficient *Information dispersal algorithm* (and respective reconstruction).
 - Probabilities associated with the cut-and-choose.
 - A much simpler solution exists if rewinding is allowed.
Thank you for your attention!

Very-efficient flipping of many coins

(soon to be on eprint)

lbrandao at {alunos.fc.ul.pt, cmu.edu}

The images used in this presentation were taken from openclipart.org and clker.com, with the expectation of being in the public-domain and available for free usage.
If rewinding is OK, use another template

1. Bob Q-commits hash of his contribution

2. Alice X-commits seed of a mask, and sends her masked contribution

3. Bob sends his contribution and Q-opens its hash

4. Alice opens the seed of her contribution mask

5. Locally unmask contribution of Alice and combine contributions

Very-efficient flipping of many coins (rump session TCC 2014)