
SCAPI: The Secure Computation API

Yehuda Lindell
Bar-Ilan University, Israel

TCC 2014 Rump Session
February 25, 2014

Yehuda Lindell SCAPI 25/2/2014 1 / 10



Implementation of Secure Computation
The SCAPI Project: Secure Computation API

I Most implementation projects are aimed at solving a specific
problem more efficiently or with better security

I SCAPI is an implementation project with no specific problem
in mind (it is a general-purpose secure computation library)

I SCAPI is open source; we have a long-term commitment (as
long as we have money) to the project (bug fixes, additional
functionality, improve existing implementations etc.)

Yehuda Lindell SCAPI 25/2/2014 2 / 10



Basic Design Decisions

I SCAPI is written in Java
I Suitable for large projects, and quick implementation
I Portability (e.g., secure computation between a mobile device

and a server)
I Existing libraries (e.g., Bouncy Castle)
I The JNI framework: can use libraries and primitives written in

native code (and thus inherit their efficiency)

Yehuda Lindell SCAPI 25/2/2014 3 / 10



Design Principles

I Flexibility:
I Cryptographers write protocols in abstract terms (OT,

commitment, PRF, etc.)
I SCAPI encourages implementation at this abstract level (work

with any “DLOG group” and afterwards instantiate with
concrete group and concrete library; e.g. EC-group from
Miracl)

I Can work at many different levels of abstraction, as desired

I Extendibility: can add support for any new libraries and
implementation by providing wrappers that implement the
defined interfaces (we are now adding openSSL)

I Efficiency: via JNI can access fast low-level libraries like
Miracl, but work at the level of Java and with abstract objects

I Ease of use: SCAPI uses terminology that cryptographers are
used to; SCAPI is well documented and has been written
explicitly with other users in mind

Yehuda Lindell SCAPI 25/2/2014 4 / 10



Security Levels

I Consider an oblivious transfer protocol that uses a group, a
commitment scheme, and a hash function

I The theorem stating security of the protocol would say:
I Assume that DDH is hard in the group, the commitment is

perfectly binding, and the hash function is collision resistant.
I Then, the OT protocol is secure.

I SCAPI differentiates between security levels by defining
hierarchies of interfaces, and protocol constructors can
check them

Yehuda Lindell SCAPI 25/2/2014 5 / 10



Security Levels

SCAPI defines hierarchies of interfaces for security levels

Yehuda Lindell SCAPI 25/2/2014 6 / 10



Security Level Use

I The OT protocol receives a dlog group, commitment and hash
function in its constructor

I It checks that:
I The dlog group is an instance of DDH
I The commitment is an instance of PerfectBinding
I The hash function is an instance of CollisionResistant

I Security levels are also defined for protocols (semi-honest,
covert, malicious, stand-alone, UC secure, and so on)

Yehuda Lindell SCAPI 25/2/2014 7 / 10



Layers and Primitives

SCAPI has three layers

I Basic primitives (discrete log groups, PRFs, PRPs, hash,
universal hash, etc.)

I Non-interactive schemes (symmetric and asymmetric
encryption, MACs, signatures)

I Interactive protocols (oblivious transfer, garbled circuits,
sigma protocols, ZK, ZKPOK, commitments, etc.)

I We are continually adding: OT extensions for semi-honest
(ACM CCS 13), JustGarble, wrapper for OpenSSL

Yehuda Lindell SCAPI 25/2/2014 8 / 10



Example Usage
The Cramer-Shoup Encryption Scheme

public interface CramerShoupDDHEnc extends AsymmetricEnc, Cca2 {

}

public CramerShoupAbs(DlogGroup dlogGroup, CryptographicHash hash, SecureRandom random){

//The Cramer-Shoup encryption scheme must work with a Dlog Group that has DDH security level

//and a Hash function that has CollisionResistant security level. If any of this conditions is not

//met then cannot construct an object of type Cramer-Shoup encryption scheme; therefore throw exception.

if(!(dlogGroup instanceof DDH)){

throw new IllegalArgumentException("The Dlog group has to have DDH security level");

}

if(!(hash instanceof CollisionResistant)){

throw new IllegalArgumentException("The hash function has to have CollisionResistant security level");

}

// Everything is correct, then sets the member variables and creates object.

this.dlogGroup = dlogGroup;

qMinusOne = dlogGroup.getOrder().subtract(BigInteger.ONE);

this.hash = hash;

this.random = random;

}

Yehuda Lindell SCAPI 25/2/2014 9 / 10



Results – Average of 1000 Runs
The Cramer-Shoup Encryption Scheme

Dlog Group

Type

Dlog

Provider

Dlog

Param
Hash

Function
Hash

Provider

Encrypt

Time (ms)

Decrypt

Time (ms)

DlogZpSafePrime CryptoPP 1024 SHA-256 BC 6.072 3.665

DlogZpSafePrime CryptoPP 2048 SHA-256 BC 43.818 26.289

DlogECFp BC P-224 SHA-1 BC 54.171 31.662

DlogECF2m BC B-233 SHA-1 BC 107.316 65.185

DlogECF2m BC K-233 SHA-1 BC 25.292 14.886

DlogECFp Miracl P-224 SHA-1 BC 6.571 3.929

DlogECF2m Miracl B-233 SHA-1 BC 5.819 3.652

DlogECF2m Miracl K-233 SHA-1 BC 2.753 1.787

Yehuda Lindell SCAPI 25/2/2014 10 / 10


