Physical Randomness Extractors

Kai-Min Chung

Academia Sinica, Taiwan

Yaoyun Shi University of Michigan Xiaodi Wu MIT/UC Berkeley

1

Presented in QIP'14 as plenary talk (joint with [MS'14])

Randomness

- Randomness is a vital resource
 - necessary in cryptography
 - pervasive in computer science
- How can we be sure a source is truly random?
 - Bias? Correlation?
 - and...

Randomness

- Randomness is a vital resource
 - necessary in cryptography

nervasive in computer science

What are the minimal assumptions for generating (almost) uniform randomness?

— and...

• Extract pure randomness from "weak" sources.

- Extract pure randomness from "weak" sources. Require:
 - sufficient min-entropy
 - at least two independent sources

- Extract pure randomness from "weak" sources. Require:
 - sufficient min-entropy
 - at least two independent sources

• Extract pure randomness from "weak" sources. Require:

- sufficient min-entropy
- at least two independent sources

Our Proposal— Physical Randomness Extractors

- Requirements:
 - source has sufficient min-entropy
 - spatial separate devices

Our Proposal— Physical Randomness Extractors

- Requirements:
 - source has sufficient min-entropy
 - spatial separate devices

Our Proposal— Physical Randomness Extractors No independence assumption:

- Requirements:
- allow source-device correlation
- source has suffic •
- spatial separate device

Accept/Reject

No trust on devices

Completeness: if devices honest \Rightarrow

accept w.h.p. & output \approx uniform

Soundness: if devices malicious \Rightarrow

either reject w.h.p. or (output|accept) ≈ uniform

Our Result— Efficient Physical Randomness Extractor

• Extract arbitrary N bits of randomness using source with O(1)-bit entropy and O(1) devices with 0.001 error in $\tilde{O}(N)$ time with additional features

• Generate pure randomness by measuring q-bits in superposition.

Image: State of the state

- Generate pure randomness by measuring q-bits in superposition. However...
 - Noise
 - inherent
 - bias outcome

• Generate pure randomness by measuring q-bits in superposition. However...

• Noise

- inherent
- bias outcome
- Adversary

 no entropy against Adv!

Can we avoid trusting quantum devices?

Well, this is not new.....

Device-independent Quantum Cryptography

The Central Rule: Trust *classical operations* only, without assumption on inner-working of super-classical devices. Origins in the 90's [Mayers-Yao'98] Develop rapidly very recently!

Our Result—

Efficient Physical Randomness Extractor

• Extract arbitrary N bits of randomness using source with O(1)-bit entropy and O(1) devices with 0.001 error in $\tilde{O}(N)$ time with additional features

Prior to our work, only known how to extract a single bit from Santha-Vazirani (SV) source with non-constructive (thus inefficient) extractors [GMdIT+12]

Our Result—

Efficient Physical Randomness Extractor

- Extract arbitrary N bits of randomness using source with O(1)-bit entropy and O(1) devices with 0.001 error in $\tilde{O}(N)$ time with additional features
 - **Robustness**: accept w.h.p. w.r.t. honest devices with $\Omega(1)$ noise rate.
 - Simplicity: very simple construction and analysis via composition
 - Our key composition lemma already found application for (unbounded) randomness expansion to simplify and improve [CY14]

Available on arXiv:1402.4797