How to Use Bitcoin to Design Fair Protocols

Iddo Bentov (Technion) Ranjit Kumaresan (Technion)

ePrint 2014/129

Fairness in Secure Computation

Fair coin tossing is impossible [Cle86]

Fair Exchange

Fair exchange is impossible [Cle86,BN00]

Workarounds

- Let's release output gradually...
- Let's do partial fairness?
- Let's be optimistic!

Let's compensate the poor guy with some money!

If only there was a better middle ground...

BITCOIN

R CRIPTOGRAPHY WE TRU

Defn.1: A cryptosystem is secure if my bank uses it and I'm not losing money

Vissing Rieces

Security definition??

Abstraction of what you want from Bitcoin??

Standard Security Definitions

Where is the money???

Standard Security Definitions

Abstraction of Bitcoin Functionality

Functionality $\mathcal{F}_{\mathrm{CR}}^{\star}$

 \mathcal{F}_{CR}^{\star} with session identifier *sid*, running with parties P_1, \ldots, P_n , a parameter 1^{λ} , and an ideal adversary S proceeds as follows:

- Deposit phase. Upon receiving the tuple (deposit, sid, ssid, s, r, φ_{s,r}, τ, coins(x)) from P_s, record the message (deposit, sid, ssid, s, r, φ_{s,r}, τ, x) and send it to all parties. Ignore any future deposit messages with the same ssid from P_s to P_r.
- Claim phase. In round τ, upon receiving (claim, sid, ssid, s, r, φ_{s,r}, τ, x, w) from P_r, check if (1) a tuple (deposit, sid, ssid, s, r, φ_{s,r}, τ, x) was recorded, and (2) if φ_{s,r}(w) = 1. If both checks pass, send (claim, sid, ssid, s, r, φ_{s,r}, τ, x, w) to all parties, send (claim, sid, ssid, s, r, φ_{s,r}, τ, coins(x)) to P_r, and delete the record (deposit, sid, ssid, s, r, φ_{s,r}, τ, x).
- *Refund phase:* In round $\tau + 1$, if the record (deposit, *sid*, *ssid*, *s*, *r*, $\phi_{s,r}, \tau, x$) was not deleted, then send (refund, *sid*, *ssid*, *s*, *r*, $\phi_{s,r}, \tau$, coins(*x*)) to P_s , and delete the record (deposit, *sid*, *ssid*, *s*, *r*, $\phi_{s,r}, \tau, x$).

Figure 1: The special ideal functionality \mathcal{F}_{CR}^{\star} .

Ladder Protocols

- Multiparty fair secure computation & fair lottery
 Provably Secure
 - Also, more efficient than prior ad-hoc constructions [ADMM13,14]

Killer App for MPC?

People don't seem to care much about privacy... MPC has to provide something that people really need right now...

- Fair exchange?
- Fair lottery?
- REAL poker over the internet?

Thank You!! ePrint 2014/129

Thank You!

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 259426 – ERC – Cryptography and Complexity