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Fully Homomorphic Encryption (FHE

Anesome!
| give the cloud encrypted program EP)
For (possibly encrypted) X, cloud can compute EP(X))
| can decrypt to recover P(X)
Cloud learns nothing about P, or even P(x)

Problem...
What if | want the cloud to learn P(x) (but still not P)?

So that the cloud cantake some action if P(x) = 1.



Obfuscation

Obfuscation
| give the cloud an “encrypted” program EP).
For any input X, cloud can compute EP)(X) = P(x).
Cloud learns “nothing” about P, except {x;,P(x;)}

Barak et al: “On the (Im)possibility of Obfuscating Programs

Difference between obfuscation and FHE
In FHE, cloud computes EP(x)) and can't decrypt to get P(x).

Step inright direction? Modify FHE so that cloud can detect
when some special value, say ‘0’ iIs encrypted

A zero tes (or equality teq)


プレゼンター
プレゼンテーションのノート
Barak Goldreich Impag Rudich Sahai Vadhan Yang


FHEwith a Zero Ted

Seems as powerful as FHE (if message space is large).

1o regain semantic security:
Use a composite N = pg message space
Mod-p part for message, mod-qg part for randomness

Perhaps more powerful
Control when cloud extracts information
Eg, when residues mod-p and mod-q “align” to O.

Difficulty:
Canwe enable zero-testing without breaking the FHE scheme?



Black Box Helds (BBFs) [BL96]

BBFS:
Each element x encoded by arbitrary string [X]
(maybe more than 1)

Given [X], [y], BBF oracle provides [x+y]and [X-y]
Equality test: Given [x], [y], Eq([x],[y]) outputs 1 iff x = .

Sort of like FHE scheme with zero test


プレゼンター
プレゼンテーションのノート
Generate an elliptic curve of smooth order.
Find [y] such that (x,y) is on the curve.
Compute DL of (x,y) wrt a base point using an algebraic algorithm, and thereby express x in terms of base point.



Attacks on Black Box Helds

BB Problem: Given encoding [X] of x In F,, output x.

Solvable in sub-exponential time.
Technique: Solve DL,(x,y) over elliptic curve with smooth order.

Solvable in quantum polynomial time [VDHIO3]

Corollary: HHE over F, with a zero test Is breakable
In subexponential or qua ntum polynomial time.

Not fatal, but troubling.

Anyway, we don't have a construction of FHE with
Zero test.



Somewhat HE (SWHB with a Zero Tes

SWHE

Can evaluate functions of degree bounded by some
polynomial in the security parameter

SWHE with zero test

Boneh-Lipton subexponential attack does not apply.
Nor does guantum attack.

Turns out to be like a multilinear map!



Blinear Maps

Cryptographic bilinear map (for groups)
Groups G,, G, of order p with generators g,,d,
Bilinear map:

e:G, xG;, —» G, where

e(9,%.0,°) = g,2* forallab 2 F,
Bilinear DDH: Given g,21, 9,22, 9,22 G, and h2 G,
distinguish whether h = g,22: or Is random.

Bilinear group = Degree-2 HEwith equality test
Enci(@) — g7



Multilinear Maps

Cryptographic k-multilinear map (for groups)
Groups G4, ..., G, of order p with generatorsg,, ..., g,
Family of maps:
e;j - G; x G; — Gy for i+] <k, where

e;j@%9,°) = gi.* forallab 2 F,

Notation Simplification: e(@;;, ---, Gi) = Giy+_+i,
k-linear DDH: Given g,21,..., g%« 2 Gl, and h2 G,

distinguish whether h = g,2:--«1 or Is random.

k-linear group = Degree-k SWHEwith a zero test
Enci(a) = g&. Bval degree-k polyson level-1 encodings.



Probablligic Ehcodings and Extraction

For multilinear groups, encoding Is deterministic
Zero test Is immediate

Extraction: Parties that arrive at the same encoding can
easily extract a shared key

For a SWHEscheme with a zero test, encoding Is
probabilistic

A zero test doesn't imply an extraction procedure.
So, let’s assume an extraction procedure for now.



- Multilinear Maps: Applications

Thanksto Brent for some of these dides



Applications

Easy Application: (k+1)-partite key agreement using
k-linear map [Boneh-Silverberg ‘03]

Party 1 generates level-0 encoding of a;.

Party | broadcasts level-1 encoding of a..

Each party separately computes key e(g,, ..., gq)22e,
Secure assuming k-linear DDH: Given g,21,..., g%« 2
G,,and h2 G, hard to distinguish whether h = g, 2.

More Interesting applications:
Attribute-based encryption for circuits [GGHSW12].
Witness encryption [GGSW13]



Attribute Based Encryption (ABB

Setup(12,F): takes as input a
security parameter and a class of
functions F= {f : {0,1} — {0,1}}
Outputs master secret and public
keys MSK, MPK

KeyGen(MSK): Authority uses MSK to
generate a key SK: for the function f.

f represents a user’s “key policy” that
specifies when it can decrypt.

Encryption(MPK, A, M): Outputs CT that Decryption(SK;,CT):
encrypts M under string A € {0,1}". Decrypter recovers
“A” may be “attributes” needed by decrypter. M iff f(A)=1.




Prior Work on ABE

F = simple functions in prior ABE schemes
Example: F= formulas.
For F = circuits, prior schemes have exponential complexity

Tools:
Bilinear maps [SW05,GOSWO06,...]
Lattices (learning with error (ME)) [Boyenl3].

Big open problem: Eficient ABE for arauts
Just like HETor arautswas open.
Note: Monotone circuits — general circuits.



ABEfor Circuits usng MMaps [GGHSW12]
_

L= # lewels; k= L+1; n-bit inputs
k-linear map: G, ..., Gy, 94, ..., 9y

N\

AND gate: similar
to ORgate

MSK = g,* for uniform ain F
MPK = g,, h,, ...h, EG],gkaEGk

KeyGen: Randomr,, < F, for each wire
W In circulit, exceptr = o for output wire.

ORgate: Input wires X,y and output W|re

w at depth j. Choose randoma,, b, in
lee glaw g rW-aWrX glbw g rvv'bwl%/

AND gate: Give g,2w, g,w, g "wawxbuly,

Encryption: Enc. M for attributes A€{0,1}"| | Decryption: Gate-by-gate

 Mom aS aS s to output wire, compute
s Py CT=Mg™ 9% VyEAD, gj+ W for wiresat depth j

AN



プレゼンター
プレゼンテーションのノート
Circuits are DeMorganized: AND, OR gates, NOTs at leaves.



Summary of ABEfor Circuits

Now we have ABEfor arbitrarily complex policies
The scheme Is quite simple.

Ciphertexts are “succinct”
Do not grow with size of circuit.
Grow with size of Input.
Grow with depth of circuit (due to our construction of mmaps)

Security: based on k-linear DDH

Interesting concurrent work:
[GVW 13] ABE for circuits based on IWE



Witness BEhcryption

Can we encrypt a message so that it can
opened only by a recipient who knows a
witness to a NP relatior??

- Unlike ABE x Like a proof of
No “authority” in the system P

No “secret key” per se the Riema r\n
Hypothesis.

- Related concepts:

Rudich’'89: Comp. secret sharing for NP-comp access structures



Witness BEncryption: Definition

NP language Lwith witness relation R(:,-)
Encrypt(1*, x, M) — CT
Decrypt(CT, w) — (M U _1)

Notice the gap.
No immediate security

Correctness promises when x in L

VA, M, xEL s.t. R(x,w é have Dec(Enc(1X,x,M),w) = M

Security

If x is not in L, then Enc(1?, x, My) = Enc(1%, x, M,)



Exact Cover Problem [Karp72]

N
0 Problem: x includes n and subsets T,, ..., T € [n]

m

- Witness: | € [m] s.t. {T. : i € I} partitions [n]

- Examples: 4, ({2,3}, {2,4}, {1,4})
4, ({2,3},{2,4}, {1})



Our WE Condruction (for Exact Cover)

]
0 Encryp'r(ll, (n, (Ty, ..., T, € [n])), M € G,)

n-linear group family G4, ..., G,, generators g4, ..., gn-

Choose random a4, ...,a, € Fp.
C= Mg €= (g, )V for all i € m]

o Decrypt(CT, w = I = (iq, ..., it))
C/B(Cilciz, . Cit)



Limtationsin Proving

Suppose we have a black box reduction of WEto
some non-interactive assumption. Hther:

<0 Assumption depends on NP instance
Reduction uses enough computation to decide relation R

Decision No Exact Cover Problem Family
(n, (T4, ..., T,,, S [n])), G(1M,n) = (G, ..., G,)

Ay, o, O, < By Ci = (gy7,) VETY for all i € [m]

Distinguish C = g, *"“" from g



Fun Application of WE

_ Public Kex Enc with Sueer-Fast KexGen

0 KeyGen(12):
o Let F: {0,1} — {0,1}** be a PRG.
11 SK = PRG seed s € {0,1}.  PK = F(s).

01 Encrypt(PK, M)
=1 Karp-Levin reduction x € L iff PK is in range of F.

o Encryptye(1, x, M) — CT

0 Decrypt(SK =s, CT)
s — witness w

o Decrypte(CT, w) — M



Proof Sketch for PKE Schenme

PRG security — indistinguishable whether PKis a
PRG output or truly random

if PKtruly random, then x not in L (with high prob),
and we can rely on soundness of WE scheme



Maps from Ideal Lattices




Cryptographic Multilinear Maps:
Do They EXist?

Boneh and Silverberg ‘03 say it’s unlikely
cryptographic mmmaps can be constructed from
abelian varieties:

“We also give evidence that such maps might have to either
come from outside the realm of algebraic geometry, or occur
as ‘umratural computable maps arisng fromgeometry.”

Unnatural geometric maps: Why not the ‘noisy’
mappings of lattice-based crypto?



Overview of Our Nolsy M-Maps

Encoding: m — g™ (groups) becomes m — Enc;(m) for us.
Enc(m) iIsa “level-1 encoding of m”.
Our encoding system builds on the NTRU encryption scheme.

Zero test: For k-linear maps, we use a level-k zero tester
to test equality of level-k encodings and extract keys.

Repairs: Zero testers cause security issues to fix.
Certain aspects of the “message space” of our encodings
must be kept secret.

Our params only enable encoding of random elements.
Sufficient for our ABEand WEapplications.



Sarting Roint: the NTRU Cryptosysem

5 NTRU's concept: The following are indistinguishable:
A random element of R, = Z [x]/(x"-1). (q=127,N=257)

A ratio a/b € R, of "small” elements. That is, a and b are
polynomials in R, with small coefficients — e.g. in {-1,0,1}.

- Secret key: uniform z € R,..
Publickey: ¢, =a,/z, ¢4 =0ay/z €ER, with a;,aqsmall.
Let p be a small integer or ideal generator w/ ged(p,q)=1 (p=3)

Make sure a, = 1 mod p and a, = 0 mod p.

Ciphertexts: A ciphertext that encrypts m € R, has the form
e/z € R,, where e is “small” and e = m mod p.

c, encrypts 1, and ¢, encrypts O.



NTRU Cryptosysem Bharypt, Decrypt

N
5 Encrypt(PK,m) for “small” m
Generate random “small” r € R,..
Output ciphertext CT =m - ¢, +r-c, € R,
Observe: CT = (ma,+ra,)/z € R,, where ma,+ray is
“small” and equals m mod p.

Encryption implicitly uses additive homomorphism of NTRU.

-1 Decrypt(SK,CT):
Compute CT-z = ma,+ra, € R,
Get ma,+ra, exactly (unreduced mod q) since it is “small’.

Reduce modulo p to recover m.



Basc NTRJ: Sunmary

Ciphertext that encrypts mhas forme/ z, where
e issmall
e=mmodp
Z IS the secret key

To decrypt, multiply by z and reduce mod p.

Public key has encryptions of 1 and 0 (c; and c,).
To encrypt m, multiply mwith ¢, and add “random”
encryption of O.



NTRU: Additive Homonmorphiam

Given: CTy, CT, that encrypt m;,m, 2 R,
CTi=e/z2 R,wheree;issmalland e;= m mod p.

SetCT=CT+CT, 2 Riand m=m+m, 2 R,
Then CT encrypts m.

CT= (e,+e,)/ zwhere e;+e,=mmod p and e,+e, IS
“sort of small”. Itworksif |e| «q.



NTRU: Multiplicative Homomorphiam

Given: CTy, CT, that encrypt m,m, 2 R,.
¢;=e/z2 R,wheree;issmalland e; = mymod p.

SetCT=CT-CT,2 Rand m=m:'m, 2 R,
Then CTencrypts munder z2 (rather than under z).
CT= (e,e,) z2 where e;-e,=mmod p and e, e, is

“sort of small”. It worksif | e| « 4 q.



NTRU: Any Homogeneous Folynomal

Given: CTy, ..., CT, encrypting m,,..., m.
CTi=e/z2 R,wheree;issmalland e;= m mod (p).

Let f be a homogeneous polynomial of degree d.
Set CI=1(CT,, ..., CTp2 R, m=f(m;, ..., m)2 R

Then CT encrypts munder z9.

CT= f(e,, ..., e)/ z¢ where f(e,, ..., e)=mmod p and
fle, ..., &) is “sort of small”. Itworksif |e| «qg¥/q.



Homomorphic NTRU: Summary

Ciphertext that encrypts mat “level d” has forme/ z¢:
e issmall
e=mmod p
Z Is the secret key

To decrypt, multiply by z% and reduce mod p.

How homomorphic?: For any degree-d homogeneous
f(Xy, ..., X)), we get a “level-d” encryption of f(m, ..., m)
from “level-1” encryptions {CT, = e/ z} of {m}, if e/sare
small enough.

“Noise” — size of numerator — grows exp. with degree.
Works OKif d is (sublinear) polynomial in security param.



Adding a Zero/ Equality Tes to NTRU

Given level-k encodings CT, = e,/ z*and CT, = e,/ z¥ how
do we test whether they encode the same m?

Fact: If they encode same thing, thene;-e, = 0 mod (p).
Moreover, (e,-e,)/ p isa “small” polynomial.

Zero-Testing parameter:
ar= hz¥ p for “medium-size” h  (e.g.| h| =qg¥4)
if CT,, CT, encode same thing, then denominator p disappears
| h(e,-e,)/ p| 1s “medium-sized”, unreduced mod g.
aCT, and a-CT, have same most significant bits — extract key
Otherwise, denominator p “randomizes” things mod q.

Small ideal generator p must be secret. Ideal (p) Is public.



Sunmary of Our Noisy M-Maps

- Level-i encoding of m € R has form e/Z/, where

e is small
e - m € ideal (p)

Z is secret

7 Public params have encodings of 1 and O (¢, and cy).

To encode a random element, sample “small” m, multiply
m with ¢; and add “random” encoding of O.

Homomorphisms work as in NTRU

Level-k zero tester h-z*/p enables zero-testing at level k
or below.



- Cryptanalyss



Security of NTRU

Lattice attacks on NTRU apply to our n-linear maps.
NTRU semantically secure if ratiosg/f 2 R, of “small”

elements are hard to distinguish from random elements
NTRU can be broken via lattice reduction (eventually)

[Lenstra,lenstra,lovasz ‘82]: Given a rank-n lattice L
the LLLalgorithm runs in time poly(n) and outputs a
2"-approximation of the shortest vector in L

[Schnorr'93]: 2k-approximates SVP in 2V K time (roughly)



Attacks that Exploit the Zero Teder

Concept of the attack:
The zero-tester is not an “oracle”
Zero-testing could actually leak useful information

Attack In practice
Actually, our zero test does leak useftd/ information.
Our mmapsare imperfect

Some assumptions that are true for “generic” mmaps
are false for our mmmaps



Source Group Decison Assunptions

Example: Decision Linear Assumption in bilinear groups.
Distinguish (f, g, h, %, g¥, **Y) from (f, g, h, ¥, g¥, h?).
All elements in source group G,, none intarget group G..

k-linear source group assumption:
All encodings are at level < k-1.

Source group assumptions false with our m-maps
If params includes level-1 encodings of O



Target Group Deason Assunptions

Example: k-linear DDH or Decision No Exact Cover.

Target group assumption for k-linear mmaps:
The two distributions are statistically the same,
except for encodings at level k.

Target group assumptions for our m-maps seem ok.

k-linear DDH for GGH encodings: Given
“* Params: Level-1 encodings ¢,, ¢, of 0 and 1 and
level-k zero-testing parameter a,, = hz¥/p
% Level-1 encodings e,/z of m, for i € [k+1]
“* Level-k encoding of either m,**'m ., or random

Distinguish which is the case.




Havor of the Attack

An “attack’ on low-level encodings
Take a level-i encoding e/ z' for i £ k-1 (low-level encoding)
Multiply it with
A level-(k-1) encoding of O (from parans)
The level-k zero tester

Extract useful information about what is encoded

What is leaked?

Emod (p) = mmod (p)
Not mitself — I.e., not a small representative of m's coset
Not a “level-0 encoding” of m

Preventing the attack on level-k encodings
(p) is public, but small p is secret. No “level-0 encoding” of 0.



- Summary and Ruture Directions




SUmmary

“Noisy” cryptographic multilinear maps
SWHEwith a zero test
Built on the NTRU cryptosystem
Stronger computational assumptions than NTRU.

Applications:
ABE for Circuits
Witness Encryption



Future Directions

Security
Need more cryptanalysis of our m-maps
M-maps based on better assumptions (like WE)?

Applications
Functional encryption?
Some types of obfuscation?



Thank Youl Quedions?

Ex D




Revigting Multilinear DDH

Ineffective attack: Multiply the k+1 contributions to
get anencoding at level k+1; not useful (similar to
bilinear groups)

(H zZk1)-(hz¥ p) = B/ pz. Can't get rid of denominator.



Attacks that Exploit the Zero Teder

Additional attacks:

The principal ideal I = (p) is not hidden.
Recalla, = hz¥p, hy = as/zand hy = a,/ zwitha, = ¢,p.
The terms a-hy" h,¥' = h-c,-p*t-e X likely generate I.
But we must hide p itself
An attacker can break our scheme with a “small” generator
p’of 1= (p)
An attacker that finds a good basis of I can break our
scheme.



What Does Zero Tesing Leak?

let e/ Z' be a level-i encoding of mfor i < k.

€/Z)- ¢kl -ar=(/2) - @@/ 2 (@y/ 2) - (hz¥ p)
=e- a3, -h

e -a, - a, - hunreduced mod q.
We get e’s coset mod p.

We get a “bad level-0 encoding” of m.
A“good” level-i encoding has a small numerator.



Usng a Good Bagsof |

Player I's DH contribution: a level-1 encoding of a..

Easy to compute a;'s coset of I. (Notice: this Is different
from finding a “small” representative of a;'s coset, a level-
0 encoding of a;.)
Compute level-(n-1) encodings of 1 and a:: e/ z%, e’/ z™1,
Multiply each of themwith a,, and hy = c,p/ z.
We get bec, and be’c,.
Compute be’cy/ bec, = e’/ e In R, to get a;'s coset.

Spoofing Player i: If we have a good basis of |, player I's
coset gives a level-0 encoding of a;. The attacker can

spoof player i.



Dimenson-Ha lving for Principal Ideal
Lattices

There are better attacks on principal ideal lattices
than on general ideal lattices. (But still inefficient.)

[GS'02]: Given
a basis of 1= (u) for u(x) 2 Rand
u’'s relative norm u(x)a(x) in the index-2 subfield

QECn+ G,

we can compute u(x) in poly-time.

Corollary: Set v(x) = u(x)/ 6(x). We can compute V(x)
given a basis of J = (v).
We know v(x)'s relative normequal 1.



Dimenson-Ha lving for Principal Ideal
Lattices

Attack given a basis of | = (u):
Hrst, compute v(X) = u(x)/ t(x).
Given a basis u(x)ri(x)}of I, multiply by 1+1/wv(x) to get
a basis {U)+ a(x)r:(x)}of K= (u(x)+i(x)) over R

Intersect Ks lattice with subring R = ZJ(+ (] to geta
basis {uX)+ t(x))si(x) : si(x) 2 R}of Kover R.

Apply lattice reduction to lattice {u(x)si(x) : s{(x) 2 R}
which has half the usual dimension.



A “Straight Line Program (SLP)” Model
of Attacks on Our M-Maps
_
= SLP attack model: Attacker can +,-,X,+ encodings in
R, (until it gets a level-i encoding of O, i = k).

View encodings as formal rational polynomials P/Q.
The ops +,-,X,+ give more rational polynomials.
Which ones can it compute?

7 Params: a,/z, a,/z, h-z*/p

- Weight the variables
Set w(a)) = w(z) = w(p) = 1 and w(h) = 1-k.
w(a./z) = 0. Weight of all terms above is 0.

Given params, +,-,X,=+ only yield terms of weight O.



S P Attacks Don't Break Target Group
Assumptions

SLP attacker against MDDH

Hrst attack: Try to compute level-k encoding E z* of
m,---m.., fromparams and the parties’ encodings e/ z.

E zX must have weight zero.

Emust have weight k.

But Emust have e,---e,,, Inside it; else hopeless.

Now numerator’s weight is too large. Must reduce weight

using h (it is the only negative weight term).

But h is middle size, so numerator is not small anymore.
Second attack: Try to find nontrivial relation among the
encodings of the MDDH insta nce.

Analysis is similar: relation must have degree 2 k+1.



Homomorphic Encryption

The special sauce! For security
parameter k, Bval's running
should be Time(f)-poly(A)

“Ilwant 1) the cloud to process my data
2) even though it is encrypted.

Run
f, Enc,(x)

(Input: data X, key k)

BN, [(x)]

Enc, ()
function f
Server
This could be (Cloud)

encrypted too.

Delegation: Should cost less for

Alice to encrypt x and decrypt f(x)
Ean[f(X)] than to compute f(x) herself.

f(x)
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