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Fully Homomorphic Encryption (FHE) 

 Awesome! 
 I give the cloud encrypted program E(P) 
 For (possibly encrypted) x, cloud can compute E(P(x)) 
 I can decrypt to recover P(x) 
 Cloud learns nothing about P, or even P(x) 

 
 Problem… 

 What if I want the cloud to learn P(x) (but still not P)?  
 So tha t the cloud can take some action if P(x) =  1. 



 Obfuscation 
 I give the cloud an “encrypted” program E(P). 
 For any input x, cloud can compute E(P)(x) = P(x). 
 Cloud learns “nothing” about P, except {xi,P(xi)}.  

 

 Barak et a l: “On the (Im)possibility of Obfusca ting Programs” 
 

 Difference between obfusca tion and FHE: 
 In FHE, cloud computes E(P(x)) and can’t decrypt to get P(x). 
 

 Step in right direction? Modify FHE so tha t cloud can detect 
when some specia l va lue, say ‘0’, is encrypted 
 A zero test (or equality test) 

Obfuscation 
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FHE with a Zero Test 

 Seems as powerful as FHE (if message space is la rge).         
 To regain semantic security: 

 Use a  composite N = pq message space 
 Mod-p part for message, mod-q part for randomness 
 

 Perhaps more powerful 
 Control when cloud extracts information 
 E.g, when residues mod-p and mod-q “align” to 0. 

 
 Difficulty: 

 Can we enable zero-testing without breaking the FHE scheme? 



Black Box Fields (BBFs) [BL96] 

 BBFs: 
 Each element x encoded by arbitra ry string [x]                   

(maybe more than 1) 
 Given [x], [y], BBF oracle provides [x+y] and [x·y] 
 Equality test: Given [x], [y], Eq([x],[y]) outputs 1 iff x =  y. 

 
 Sort of like FHE scheme with zero test 
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Attacks on Black Box Fields 

 BBF Problem: Given encoding [x] of x in Fp, output x.   
 Solvable in sub-exponentia l time.   
 Technique: Solve DLA(x,y) over elliptic curve with smooth order. 

 Solvable in quantum polynomial time [vDHI03] 
 

 Corolla ry: FHE over Fp with a  zero test is breakable 
in subexponentia l or quantum polynomia l time. 
 

 Not fa ta l, but troubling.   
 Anyway, we don’t have a  construction of FHE with 

zero test. 



Somewhat HE (SWHE) with a Zero Test 

 SWHE 
 Can evalua te functions of degree bounded by some 

polynomia l in the security parameter 
 

 SWHE with zero test 
 Boneh-Lipton subexponentia l a ttack does not apply.  

Nor does quantum a ttack. 
 Turns out to be like a  multilinear map! 
 



Bilinear Maps 

 Cryptographic bilinear map (for groups) 
 Groups G1, G2 of order p with genera tors g1,g2 
 Bilinear map:    
   e : G1 × G1 → G2  where 

      
 e(g1

a,g1
b) =  g2

ab for a ll a ,b 2  Fp. 

 Bilinear DDH: Given g1
a 1, g1

a 2, g1
a 3 2  G1, and h2 G2, 

distinguish whether h = g2
a 1a 2a 3 or is random. 

 

 Bilinear group ≈ Degree-2 HE with equality test 
 Enci(a ) → gi

a 



Multilinear Maps 

 Cryptographic k-multilinear map (for groups) 
 Groups G1, …, Gk of order p with genera tors g1, …, gk 
 Family of maps:    
   ei,j : Gi × Gj → Gi+j  for i+j ≤ k, where 

     
 ei,j(gi

a,gj
b) =  gi+j

ab for a ll a ,b 2  Fp. 
 Nota tion Simplifica tion: e(gi1, …, git) =  gi1+...+it. 

 k-linear DDH: Given g1
a 1,…, g1

a k+1 2 G1, and h2 Gk, 
distinguish whether h = gk

a 1…a k+1 or is random. 
 

 k-linear group ≈ Degree-k SWHE with a  zero test  
 Enci(a ) =  gi

a.  Eval degree-k polys on level-1 encodings.  
 



Probabilistic Encodings and Extraction 

 For multilinear groups, encoding is deterministic 
 Zero test is immedia te 
 Extraction: Parties tha t a rrive a t the same encoding can 

easily extract a  shared key 
 

 For a  SWHE scheme with a  zero test, encoding is 
probabilistic 
 A zero test doesn’t imply an extraction procedure. 
 So, let’s assume an extraction procedure for now. 



Thanks to Brent for some of these slides 

Multilinear Maps: Applica tions 



Applications 

 Easy Applica tion: (k+1)-partite key agreement using 
k-linear map [Boneh-Silverberg ‘03]:  
 Party i genera tes level-0 encoding of a i. 
 Party I broadcasts level-1 encoding of a i. 
 Each party separa tely computes key e(g1, …, g1)a 1…a k+1. 
 Secure assuming k-linear DDH: Given g1

a 1,…, g1
a k+1 2  

G1, and h2 Gn, hard to distinguish whether h = gk
a 1…a k+1. 

 
 More interesting applica tions:  

 Attribute-based encryption for circuits [GGHSW12]. 
 Witness encryption [GGSW13] 



Attribute Based Encryption (ABE) 

Setup(1λ,F): takes as input a  
security parameter and a  class of 
functions F = {f : {0,1}n → {0,1}}. 
Outputs master secret and public 
keys MSK, MPK. 

KeyGen(MSK,f): Authority uses MSK to 
genera te a  key SKf for the function f. 

Decryption(SKf,CT): 
Decrypter recovers 
M iff f(A)=1. 

f represents a  user’s “key policy” tha t 
specifies when it can decrypt. 



Prior Work on ABE 

 F = simple functions in prior ABE schemes 
 Example: F = formulas. 
 For F = circuits, prior schemes have exponentia l complexity 

 

 Tools: 
 Bilinear maps [SW05,GOSW06,…] 
 Lattices (learning with error (LWE)) [Boyen13]. 

 

 Big open problem: Efficient ABE for circuits. 
 Just like HE for circuits was open. 
 Note: Monotone circuits → genera l circuits. 



ABE for Circuits using MMaps [GGHSW12] 

L = #  levels; k = L+1; n-bit inputs 
k-linear map: G1, …, Gk; g1, …, gk 

KeyGen: Random rw ← Fp for each wire 
w in circuit, except rw = α for output wire. 
OR gate: Input wires x,y and output wire 
w a t depth j. Choose random a w, bw in Fp. 
Give    g1

aw, gj
rw-awrx,        g1

bw, gj
rw-bwry. 

AND gate: Give g1
aw, g1

bw, gj
rw-awrx-bwry. 

Decryption: Gate-by-gate 
to output wire, compute 
gj+1

rws for wires a t depth j 

There is a lso a  
Boneh-Boyen-type 
decryption key for 

the input wires. 

For input wires, 
use Boneh-Boyen 
key to get g2

rws. 

OR gate: Given 
gj

rxs for input x. 
Output   gj+1

rws = 
e(g1

s, gj
rw-awrx) 

e(gj
rxs , g1

aw) 

AND gate: similar 
to OR gate 
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Summary of ABE for Circuits 

 Now we have ABE for a rbitrarily complex policies 
 The scheme is quite simple. 
 Ciphertexts a re “succinct” 
 Do not grow with size of circuit. 
 Grow with size of input. 
 Grow with depth of circuit (due to our construction of mmaps) 

 Security: based on k-linear DDH 
 

 Interesting concurrent work:  
 [GVW13] ABE for circuits based on LWE 



Witness Encryption 

Can we encrypt a  message so tha t it can 
opened only by a  recipient who knows a  

witness to a NP relation?  

 Unlike ABE: 
 No “authority” in the system 
 No “secret key” per se 

 

 Rela ted concepts:  
 Rudich’89: Comp. secret sharing for NP-comp access structures 

Like a  proof of 
the Riemann 
Hypothesis. 



Witness Encryption: Definition 

┴ 

Correctness 

Security 

Encrypt(1λ, x, M) → CT 
NP language L with witness rela tion R(·,·) 

Notice the gap. 
No immedia te security 
promises when x in L. 



Exact Cover Problem [Karp72] 





Our WE Construction (for Exact Cover) 





Limitations in Proving 

 Suppose we have a  black box reduction of WE to 
some non-interactive assumption.  Either: 
 Assumption depends on NP instance 
 Reduction uses enough computa tion to decide rela tion R 

 

 Decision No Exact Cover Problem Family 



Fun Application of WE: 
Public Key Enc with Super-Fast KeyGen 




Proof Sketch for PKE Scheme 

 PRG security → indistinguishable whether PK is a  
PRG output or truly random 
 

 If PK truly random, then x not in L (with high prob), 
and we can rely on soundness of WE scheme 



Multilinear Maps from Idea l Lattices 



Cryptographic Multilinear Maps:  
Do They Exist? 

 Boneh and Silverberg ‘03 say it’s unlikely 
cryptographic m-maps can be constructed from 
abelian varieties: 
 
“We also give evidence tha t such maps might have to either 
come from outside the rea lm of a lgebra ic geometry, or occur 
as ‘unnatural’ computable maps arising from geometry.” 

 
 Unnatura l geometric maps: Why not the ‘noisy’ 

mappings of la ttice-based crypto? 



Overview of Our Noisy M-Maps 

 Encoding: m → gi
m (groups) becomes m → Enci(m) for us. 

 Enci(m) is a  “level-i encoding of m”. 
 Our encoding system builds on the NTRU encryption scheme. 

 

 Zero test: For k-linear maps, we use a  level-k zero tester 
to test equality of level-k encodings and extract keys. 

 

 Repairs: Zero testers cause security issues to fix. 
 Certa in aspects of the “message space” of our encodings 

must be kept secret. 
 Our params only enable encoding of random elements. 
 Sufficient for our ABE and WE applica tions. 



Starting Point: the NTRU Cryptosystem  





NTRU Cryptosystem: Encrypt, Decrypt  





Basic NTRU: Summary 

 Ciphertext tha t encrypts m has form e/ z, where 
 e is small 
 e = m mod p 
 z is the secret key 

 

 To decrypt, multiply by z and reduce mod p. 
 

 Public key has encryptions of 1 and 0 (c1 and c0).  
To encrypt m, multiply m with c1 and add “random” 
encryption of 0. 



NTRU: Additive Homomorphism 

 Given: CT1, CT2 tha t encrypt m1,m2 2      Rp.  
 CTi = ei/ z 2  Rq where ei is small and ei =  mi mod p.  

 
 Set CT = CT1+CT2 2  Rq and m = m1+m2 2  Rp.                       

Then CT encrypts m. 
 CT = (e1+e2)/ z where e1+e2=m mod p and e1+e2 is 

“sort of small”.   It works if | ei|  « q. 



NTRU: Multiplicative Homomorphism 

 Given: CT1, CT2 tha t encrypt m1,m2 2  Rp.  
 ci =  ei/ z 2  Rq where ei is small and ei =  mi mod p.  

 
 Set CT = CT1∙CT2 2  Rq and m = m1∙m2 2  Rp.                          

Then CT encrypts m under z2 (ra ther than under z). 
 CT = (e1∙e2)/ z2 where e1∙e2=m mod p and e1∙e2 is               

“sort of small”.   It works if | ei|  « √q. 



NTRU: Any Homogeneous Polynomial 

 Given: CT1, …, CTt encrypting m1,…, mt.  
 CTi = ei/ z 2  Rq where ei is small and ei =  mi mod (p).  

 
 Let f be a  homogeneous polynomia l of degree d.                                 

Set CT=f(CT1, …, CTt)2 Rq, m = f(m1, …, mt)2  Rp           
Then CT encrypts m under zd.  
 CT = f(e1, …, et)/ zd where f(e1, …, et)=m mod p and 

f(e1, …, et) is “sort of small”.   It works if | ei|  « q1/ d. 



Homomorphic NTRU: Summary 

 Ciphertext tha t encrypts m a t “level d” has form e/ zd: 
 e is small 
 e = m mod p 
 z is the secret key 

 

 To decrypt, multiply by zd and reduce mod p. 
 

 How homomorphic?: For any degree-d homogeneous 
f(x1, …, xt), we get a  “level-d” encryption of f(m1, …, mt) 
from “level-1” encryptions {CTi = ei/ z} of {mi}, if ei’s are 
small enough. 
 

 “Noise” – size of numerator – grows exp. with degree. 
 Works OK if d is (sublinear) polynomial in security param. 



Adding a Zero/ Equality Test to NTRU 

 Given level-k encodings CT1 = e1/ zk and CT2 = e2/ zk, how 
do we test whether they encode the same m? 

 

 Fact: If they encode same thing, then e1-e2 = 0 mod (p).  
Moreover, (e1-e2)/ p is a  “small” polynomial. 

 

 Zero-Testing parameter:  
 a ZT = h∙zk/ p for “medium-size” h       (e.g. | h|  ≈ q3/ 4) 
 a ZT(CT1-CT2) = h(e1-e2)/ p  
 If CT1, CT2 encode same thing, then denominator p disappears 

 | h(e1-e2)/ p|  is “medium-sized”, unreduced mod q. 
 a ZT·CT1 and a ZT·CT2 have same most significant bits → extract key 

 Otherwise, denominator p “randomizes” things mod q. 
 

 Small idea l genera tor p must be secret. Idea l (p) is public. 



Summary of Our Noisy M-Maps 





Cryptanalysis 



Security of NTRU 

 Lattice a ttacks on NTRU apply to our n-linear maps. 
 NTRU semantica lly secure if ra tios g/ f 2  Rq of “small” 

elements a re hard to distinguish from random elements 
 NTRU can be broken via  la ttice reduction (eventua lly) 

 

 [Lenstra ,Lenstra ,Lovász ‘82]: Given a  rank-n la ttice L, 
the LLL a lgorithm runs in time poly(n) and outputs a  
2n-approximation of the shortest vector in L. 
 [Schnorr’93]: 2k-approximates SVP in 2n/ k time (roughly) 
 

 



Attacks that Exploit the Zero Tester 

 Concept of the a ttack: 
 The zero-tester is not an “oracle” 
 Zero-testing could actua lly leak useful information 
 

 Attack in practice 
 Actually, our zero test does leak useful information. 
 Our m-maps are imperfect 
 Some assumptions tha t a re true for “generic” m-maps 

are fa lse for our m-maps 



Source Group Decision Assumptions 

 Example: Decision Linear Assumption in bilinear groups. 
 Distinguish (f, g, h, fx, gy, hx+y) from (f, g, h, fx, gy, hz). 
 All elements in source group G1, none in ta rget group G2. 

 

 k-linear source group assumption:                                             
All encodings a re a t level ≤ k-1. 

 

 Source group assumptions fa lse with our m-maps 
 if params includes level-1 encodings of 0 



Target Group Decision Assumptions 

 Example: k-linear DDH or Decision No Exact Cover. 
 Target group assumption for k-linear m-maps:                 

The two distributions a re sta tistica lly the same, 
except for encodings a t level k. 

 Target group assumptions for our m-maps seem ok. 



Flavor of the Attack 

 An “a ttack” on low-level encodings 
 Take a  level-i encoding e/ zi for i ≤ k-1 (low-level encoding) 
 Multiply it with 
 A level-(k-i) encoding of 0 (from params) 
 The level-k zero tester 

 Extract useful information about what is encoded 
 

 What is leaked? 
 E mod (p) = m mod (p) 
 Not m itself – i.e., not a  small representa tive of m’s coset 
 Not a  “level-0 encoding” of m 
 

 Preventing the a ttack on level-k encodings 
 (p) is public, but small p is secret.  No “level-0 encoding” of 0. 



Summary and Future Directions 



Summary 

 “Noisy” cryptographic multilinear maps 
 SWHE with a  zero test 
 Built on the NTRU cryptosystem 
 Stronger computa tional assumptions than NTRU. 

 

 Applica tions: 
 ABE for Circuits 
 Witness Encryption 



Future Directions 

 Security 
 Need more cryptanalysis of our m-maps 
 M-maps based on better assumptions (like LWE)? 

 

 Applica tions 
 Functional encryption? 
 Some types of obfusca tion? 



Thank You!  Questions? 



Revisiting Multilinear DDH 

 Ineffective a ttack: Multiply the k+1 contributions to 
get an encoding a t level k+1; not useful (simila r to 
bilinear groups) 
 (E/ zk+1)·(hzk/ p) =  Eh/ pz.  Can’t get rid of denominator. 



Attacks that Exploit the Zero Tester 

 Additiona l a ttacks: 
 The principa l idea l I =  (p) is not hidden. 
 Recall a zt =  hzk/ p, h0 =  a 0/ z and h1 = a 1/ z with a 0 =  c0p. 
 The terms a zt∙h0

i∙ h1
k-i =  h∙c0

i∙pi-1∙e1
k-i likely genera te I. 

 But we must hide p itself 
 An a ttacker can break our scheme with a  “small” genera tor 

p’ of I =  (p) 
 An a ttacker tha t finds a  good basis of I can break our 

scheme. 



What Does Zero Testing Leak?  

 Let e/ zi be a  level-i encoding of m for i <  k.  
 

(e/ zi) · c1
k-1-i · c0 · a ZT =  (e/ zi) · (a 1/ z)k-1-i · (a 0/ z) · (hzk/ p)  

                       =  e · a 1
k-1-i · a 0’ · h  

 

 e · a 1
k-1-i · a 0’ · h unreduced mod q.  

 We get e’s coset mod p. 
 We get a  “bad level-0 encoding” of m. 
 A “good” level-i encoding has a  small numera tor. 



Using a Good Basis of I 

 Player i’s DH contribution: a  level-1 encoding of a i. 
 

 Easy to compute a i’s coset of I.  (Notice: this is different 
from finding a  “small” representa tive of a i’s coset, a  level-
0 encoding of a i.) 
 Compute level-(n-1) encodings of 1 and a i: e/ zn-1, e’/ zn-1. 
 Multiply each of them with a zt and h0 = c0p/ z. 
 We get bec0 and be’c0. 

 Compute be’c0/ bec0 = e’/ e in Rp to get a i’s coset.  
 

 Spoofing Player i: If we have a  good basis of I, player i’s 
coset gives a  level-0 encoding of a i.  The a ttacker can 
spoof player i. 



Dimension-Halving for Principa l Idea l 
Lattices 
 There a re better a ttacks on principa l idea l la ttices 

than on genera l idea l la ttices.  (But still inefficient.) 
 

 [GS’02]: Given  
 a  basis of I =  (u) for u(x) 2  R and 
 u’s rela tive norm u(x)ū(x) in the index-2 subfield                

Q(ζN+ ζN
-1),  

we can compute u(x) in poly-time. 
 

 Corolla ry: Set v(x) = u(x)/ ū(x).  We can compute v(x) 
given a  basis of J = (v).   
 We know v(x)’s rela tive norm equal 1. 



Dimension-Halving for Principa l Idea l 
Lattices 
 Attack given a  basis of I =  (u): 

 First, compute v(x) =  u(x)/ ū(x). 
 Given a  basis {u(x)ri(x)} of I, multiply by 1+1/ v(x) to get 

a  basis {(u(x)+ ū(x))ri(x)} of K = (u(x)+ū(x)) over R. 
 Intersect K’s la ttice with subring R’ =  Z[ζN+ ζN

-1] to get a  
basis {(u(x)+ ū(x))si(x) : si(x) 2  R’} of K over R’. 

 Apply la ttice reduction to la ttice {u(x)si(x) : si(x) 2  R’}, 
which has ha lf the usua l dimension. 



A “Stra ight Line Program (SLP)” Model 
of Attacks on Our M-Maps 




SLP Attacks Don’t Break Target Group 
Assumptions 
 SLP a ttacker aga inst MDDH 

 First a ttack: Try to compute level-k encoding E/ zk of 
m1∙∙∙mk+1 from params and the parties’ encodings ei/ z. 
 E/ zk must have weight zero. 
 E must have weight k. 
 But E must have e1···ek+1 inside it; else hopeless. 
 Now numera tor’s weight is too la rge. Must reduce weight 

using h (it is the only negative weight term). 
 But h is middle size, so numera tor is not small anymore. 

 Second a ttack: Try to find nontrivia l rela tion among the 
encodings of the MDDH instance. 
 Analysis is similar: rela tion must have degree ≥ k+1. 

 



Homomorphic Encryption 

Alice 

Server 
(Cloud) 

(Input: da ta  x, key k) 

“I want 1) the cloud to process my data  
2) even though it is encrypted. 

Enck[f(x)] 

Enck(x)  

function f 

f(x) 

Run 
Eval[ f, Enck(x) ]    

=   Enck[f(x)] 
 

The special sauce! For security 
parameter k, Eval’s running 

should be Time(f)∙poly(λ) 

This could be 
encrypted too. 

Delegation: Should cost less for 
Alice to encrypt x and decrypt f(x) 

than to compute f(x) herself. 
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